Treatment with 131I-mIBG (Metaiodobenzylguanidine): Indications, Procedures, and Results

  • Maria Rita Castellani
  • Antonio Scarale
  • Alice Lorenzoni
  • Marco Maccauro
  • Julia Balaguer Guill
  • Roberto Luksch


Since the 80s, treatment with 131I-metaiodobenzylguanidine (mIBG) has been introduced in the management of neuroendocrine tumors (NET). In several chromaffin tumors (neuroblastoma, pheochromocytoma, paraganglioma), but also medullary thyroid carcinoma and carcinoids, the efficacy and the possible role of 131I-mIBG treatment along disease course have been extensively investigated.

In children with high-risk refractory or recurrent neuroblastoma, the results of 131I-mIBG treatment have been improved by combinations with chemotherapy, radiosensitizers, and autologous stem cell support. Consequently, this treatment has been progressively incorporated into the more important multicenter trials.

For adult pheochromocytoma and paraganglioma, 131I-mIBG therapy is currently the most efficient nonsurgical therapeutic modality for inoperable or metastatic disease. In low-growing but symptomatic tumors, the powerful palliation of hormone-related secretory symptoms should also be considered when judging treatment benefit.

For other various NET types, with a wide range variability of mIBG-avid lesions, the role of this treatment is progressively decreasing by the emergence of peptide receptor radionuclide (PRRT).

Nevertheless in carcinoid tumors, 131I-MIBG remains a valid alternative radionuclide option for patients with renal impairment.

In this article, the most important practical aspects of 131I-MIBG therapy are listed and discussed.


131I-metaiodobenzylguanidine (mIBG) Radioisotopic therapy Neuroendocrine tumors (NETs) 



The authors are grateful to Emilio Bombardieri, MD, Scientific Director of Humanitas Gavazzeni Hospital, Bergamo (Italy), for his help and support in preparing this manuscript.


  1. 1.
    Wieland DM, Brown LE, Tobes MC, et al. Imaging the primate adrenal-medulla with [I-123] and [I-131] metalodobenzylguanidine: concise communication. J Nucl Med. 1981;22:358–64.PubMedGoogle Scholar
  2. 2.
    Iavarone A, Lasorella A, Servidei T, Riccardi R, Troncone L, Mastrangelo R. Biology of metaiodobenzylguanidine interactions with human neuroblastoma cells. J Nucl Biol Med. 1991;35:186–90.PubMedGoogle Scholar
  3. 3.
    Bönisch H, Brüss M. The norepinephrine transporter in physiology and disease. Handb Exp Pharmacol. 2006;175:485–524.CrossRefGoogle Scholar
  4. 4.
    Iversen LL. The uptake of noradrenaline by the isolated perfused rat heart. Br J Pharmacol Chemother. 1963;21:523–37.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Streby KA, Shah N, Ranalli MA, Kunkler A, Cripe TP. Nothing but NET: a review of norepinephrine transporter expression and efficacy of 131I-mIBG therapy. Pediatr Blood Cancer. 2015;62:5–11. Scholar
  6. 6.
    Kolby L, Bernhardt P, Levin-Jakobsen AM, et al. Uptake of meta-iodobenzylguanidine in neuroendocrine tumours is mediated by vesicular monoamine transporters. Br J Cancer. 2003;89:1383–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Smets LA, Janssen M, Rutgers M, et al. Pharmacokinetics and intracellular-distribution of the tumor-targeted radiopharmaceutical M-iodo-benzylguanidine in SK-N-SH neuroblastoma and PC-12 pheochromocytoma cells. Int J Cancer. 1991;48:609–15.PubMedCrossRefGoogle Scholar
  8. 8.
    Lashford LS, Hancock JP, Kemshead JT. Metaiodobenzylguanidine (metaiodobenzylguanidine) uptake and storage in the human neuroblastoma cell-line SK-N-BE(2C). Int J Cancer. 1991;47:105–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Gaze MN, Huxham IM, Mairs RJ, Barrett A. Intracellular localization of metaiodobenzyl guanidine in human neuroblastoma cells by electron spectroscopic imaging. Int J Cancer. 1991;47(6):875–80.PubMedCrossRefGoogle Scholar
  10. 10.
    Carlin S, Mairs RJ, McCluskey AG, Tweddle DA, Sprigg A, Estlin C, Board J, et al. Development of a real-time polymerase chain reaction assay for prediction of the uptake of meta-[(131)I]iodobenzylguanidine by neuroblastoma tumors. Clin Cancer Res. 2003;9:3338–44.PubMedGoogle Scholar
  11. 11.
    Giammarile F, Chiti A, Lassmann M, Brans B, Flux G, EANM. EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging. 2008;35:1039–47.PubMedCrossRefGoogle Scholar
  12. 12.
    McEwan AJ, Shapiro B, Sisson JC, Beierwaltes WH, Ackery DM. Radio-iodobenzylguanidine for the scintigraphic location and therapy of adrenergic tumors. Semin Nucl Med. 1985;15:132–53.PubMedCrossRefGoogle Scholar
  13. 13.
    Treuner J, Feine U, Niethammer D, et al. Scintigraphic imaging of neuroblastoma with [131-I] iodobenzylguanidine. Lancet. 1984;1:333–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Sisson JC, Shapiro B, Beierwaltes WH. Scintigraphy with I-131 MIBG as an aid to the treatment of pheochromocytomas in patients with the MEN-2 syndromes. Henry Ford Hosp Med J. 1984;32:254–61.PubMedGoogle Scholar
  15. 15.
    Treuner J, Klingebiel T, Feine U, Buck J, Bruchelt G, et al. Clinical experiences in the treatment of neuroblastoma with 131I-metaiodobenzylguanidine. Pediatr Hematol Oncol. 1986;3:205–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Hoefnagel CA, den Hartog Jager FC, van Gennip AH, Marcuse HR, Taal BG. Diagnosis and treatment of a carcinoid tumor using lodine-131 meta-iodobenzylguanidine. Clin Nucl Med. 1986;11:150–2.PubMedCrossRefGoogle Scholar
  17. 17.
    Park JR, Bagatell R, Cohn SL, Pearson AD, et al. Revisions to the international neuroblastoma response criteria: a consensus statement from the National Cancer Institute clinical trials planning meeting. J Clin Oncol. 2017;35(22):2580–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Lewington V, Lambert B, Poetschger U, Bar Sever Z, Giammarile F, McEwan AJB, Castellani R, et al. 123I-mIBG scintigraphy in neuroblastoma: development of a SIOPEN semi-quantitative reporting, method by an international panel. Eur J Nucl Med Mol Imaging. 2017;44:234–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Hickeson MP, Charron M, Maris JM, Brophy P, Kang TI, Zhuang H, Khan J, Nevrotski T. Biodistribution of post-therapeutic versus diagnostic 131I-MIBG scans in children with neuroblastoma. Pediatr Blood Cancer. 2004;42:268–74.PubMedCrossRefGoogle Scholar
  20. 20.
    Ehninger G, Klingebiel T, Kumbier I, Schuler U, Feine U, Treuner J, Waller HD. Stability and pharmacokinetics of m-[131I]iodobenzylguanidine in patients. Cancer Res. 1987;47(22):6147–9.PubMedGoogle Scholar
  21. 21.
    Wafelman AR, Nortier YL, Rosing H, Maessen HJ, Taal BG, Hoefnagel CA, Maes RA, Beijnen JH. Renal excretion of meta-iodobenzylguanidine after therapeutic doses in cancer patients and its relation to dose and creatinine clearance. Nucl Med Commun. 1995;16:767–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Mangner TJ, Tobes MC, Wieland DW, et al. Metabolism of iodine-131 metaiodobenzylguanidine in patients with metastatic pheochromocytoma. J Nucl Med. 1986;27:37–44.PubMedGoogle Scholar
  23. 23.
    Bruchelt G, Girgert R, Buck J, Wolburg H, Niethammer D, Treuner J. Cytotoxic effects of w-[131I]-and m-[125I]Iodobenzylguanidine on the human neuroblastoma cell lines SK-N-SH and SK-N-LO1. Cancer Res. 1988;48:2993–7.PubMedGoogle Scholar
  24. 24.
    Rutgers M, Buitenhuis CK, van der Valk MA, Hoefnagel CA, Voute PA, Smets LA. [(131)I] and [(125)I] metaiodobenzylguanidine therapy in macroscopic and microscopic tumors: a comparative study in SK-N-SH human neuroblastoma and PC12 rat pheochromocytoma xenografts. Int J Cancer. 2000;90:312–25.PubMedCrossRefGoogle Scholar
  25. 25.
    Howard JP, Maris JM, Kersun LS, Huberty JP, Cheng SC, Hawkins RA, Matthay KK. Tumor response and toxicity with multiple infusions of high dose 131I-MIBG for refractory neuroblastoma. Pediatr Blood Cancer. 2005;44:232–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Vöö S, Bucerius J, Mottaghy FM. I-131-MIBG therapies. Methods. 2011;55:238–45.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhou MJ, Dorala MY, DuBoisa SG, Villablancab JG, Yanikc GA, Matthay KK. Different outcomes for relapsed vs. refractory neuroblastoma after therapy with 131I-metaiodobenzylguanidine (131I-MIBG). Eur J Cancer. 2015;51(16):2465–72.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Altmann A, Kissel M, Zitzmann S, Kubler W, Mahmut M, Peschke P, Haberkorn U. Increased MIBG uptake after transfer of the human norepinephrine transporter gene in rat hepatoma. J Nucl Med. 2003;44(6):973–80.PubMedGoogle Scholar
  29. 29.
    Armour A, Cunningham SH, Gaze MN, Wheldon TE, Mairs RJ. The effect of cisplatin pretreatment on the accumulation of MIBG by neuroblastoma cells in vitro. Br J Cancer. 1997;75(4):470–6.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Meco D, Lasorella A, Riccardi A, Servidei T, Mastrangelo R, Riccardi R. Influence of cisplatin and doxorubicin on 125I-meta-iodobenzylguanidine uptake in human neuroblastoma cell lines. Eur J Cancer. 1999;35(8):1227–34.PubMedCrossRefGoogle Scholar
  31. 31.
    McCluskey AG, Boyd M, Ross SC, Cosimo E, Clark AM, Angerson WJ, Gaze MN, Mairs RJ. [131I]meta-iodobenzylguanidine and topotecan combination treatment of tumors expressing the noradrenaline transporter. Clin Cancer Res. 2005;11(21):7929–37.PubMedCrossRefGoogle Scholar
  32. 32.
    McCluskey AG, Boyd M, Gaze MN, Mairs RJ. [131I]MIBG and topotecan: a rationale for combination therapy for neuroblastoma. Cancer Lett. 2005;228(1–2):221–7.PubMedCrossRefGoogle Scholar
  33. 33.
    McCluskey AG, Mairs RJ, Tesson M, et al. Inhibition of poly(ADP-ribose) polymerase enhances the toxicity of 131I-metaiodobenzylguanidine/topotecan combination therapy to cells and xenografts that express the noradrenaline transporter. J Nucl Med. 2012;53(7):1146–54.PubMedCrossRefGoogle Scholar
  34. 34.
    DuBois SG, Allen S, Bent M, Hilton JF, Hollinger F, Hawkins R, Courtier J, Mosse YP, Matthay KK. Phase I/II study of 131I-MIBG with vincristine and 5 days of irinotecan for advanced neuroblastoma. Br J Cancer. 2015;112:644–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Castellani MR, Aktolun C, Buzzoni R, Seregni E, Chiesa C, Maccauro M, Aliberti GL, Vellani C, Lorenzoni A, Bombardieri E. Iodine-131 metaiodobenzylguanidine (I-131 MIBG) diagnosis and therapy of pheochromocytoma and paraganglioma: current problems, critical issues and presentation of a sample case. Q J Nucl Med Mol Imaging. 2013;57(2):146–52.PubMedGoogle Scholar
  36. 36.
    Chiesa C, Castellani R, Mira M, Lorenzoni A, Flux GD. Dosimetry in 131I-MIBG therapy: moving toward personalized medicine. Q J Nucl Med Mol Imaging. 2013;57:161–70.PubMedGoogle Scholar
  37. 37.
    Gaze MN, Chang YC, Flux GD, Mairs RJ, Saran FH, Meller ST. Feasibility of dosimetry-based high-dose 131I-meta-iodobenzylguanidine with topotecan as a radiosensitizer in children with metastatic neuroblastoma. Cancer Biother Radiopharm. 2005;20(2):195–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Gonias S, Goldsby R, Matthay KK, et al. Phase II study of highdose I-131 metaiodobenzylguanidine therapy for patients with metastatic pheochromocytoma and paraganglioma. J Clin Oncol. 2009;27:4162–8.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Wilson JS, Gains JE, Moroz V, Wheatley K, Gaze MN. A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur J Cancer. 2014;50(4):801–15.PubMedCrossRefGoogle Scholar
  40. 40.
    Matthay KK, DeSantes K, Hasegawa B, et al. Phase I dose escalation of I-131-metaiodobenzylguanidine with autologous bone marrow support in refractory neuroblastoma. J Clin Oncol. 1998;16:229–36.PubMedCrossRefGoogle Scholar
  41. 41.
    Averbuch SD, Steakley CS, Young RC, et al. Malignant pheochromocytoma: effective treatment with a combination of cyclophosphamide, vincristine, and dacarbazine. Ann Intern Med. 1988;109:267–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Goncalves E, Ninane J, Wese FX, et al. Familial pheochromocytoma: successful treatment with I-131 MIBG. Med Pediatr Oncol. 1990;18:126–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Bomanji J, Britton KE, Ur E, Hawkins L, Grossman AB, Besser GM. Treatment of malignant pheochromocytoma, paraganglioma and carcinoid-tumors with I-131 metaiodobenzylguanidine. Nucl Med Commun. 1993;14:856–61.PubMedCrossRefGoogle Scholar
  44. 44.
    Buscombe JR, Cwikla JB, Caplin ME, Hilson AJW. Long-term effi cacy of low activity meta-[I-131]iodobenzylguanidine therapy in patients with disseminated neuroendocrine tumours depends on initial response. Nucl Med Commun. 2005;26:969–76.PubMedCrossRefGoogle Scholar
  45. 45.
    Carrasquillo JA, Chen CC. 131 I-MIBG therapy. In: Strauss HW, et al., editors. Nuclear oncology: pathophysiology and clinical applications. New York: Springer; 2013. p. 691–714.CrossRefGoogle Scholar
  46. 46.
    DuBois SG, Matthay KK. 131I-metaiodobenzylguanidine therapy in children with advanced neuroblastoma. Q J Nucl Med Mol Imaging. 2013;57(1):53–65.PubMedGoogle Scholar
  47. 47.
    Lisenko K, Baertsch MA, Meiser R, Pavel P, Bruckner T, Kriegsmann M, Schmitt A, Witzens-Harig M, Ho AD, Hillengass J, Wuchter P. Comparison of biosimilar filgrastim, originator filgrastim, and lenograstim for autologous stem cell mobilization in patients with multiple myeloma. Transfusion. 2017;57(10):2359–65.PubMedCrossRefGoogle Scholar
  48. 48.
    Neumann HPH, Bausch B, McWhinney SR, et al. Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med. 2002;346:1459–66.PubMedCrossRefGoogle Scholar
  49. 49.
    Amar L, Bertherat J, Baudin E, et al. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol. 2005;23:8812–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Zarnegar R, Kebebew E, Duh QY, Clark OH. Malignant pheochromocytoma. Surg Oncol Clin N Am. 2006;15:555.PubMedCrossRefGoogle Scholar
  51. 51.
    Tischler AS, Kimura N, McNicol AM. Pathology of pheochromocytoma and extra-adrenal paraganglioma. In: Pacak K, Eisenhofer G, editors. Pheochromocytoma. Oxford: Blackwell; 2006. p. 557–70.Google Scholar
  52. 52.
    Timmers HJ, Chen CC, Carrasquillo JA, Whatley M, Ling A, Havekes B, et al. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J Clin Endocrinol Metab. 2009;94:4757–67.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kauhanen S, Seppanen M, Ovaska J, Minn H, Bergman J, Korsoff P, et al. The clinical value of [18F]fluoro-dihydroxyphenylalanine positron emission tomography in primary diagnosis, staging, and restaging of neuroendocrine tumors. Endocr Relat Cancer. 2009;16:255–65.PubMedCrossRefGoogle Scholar
  54. 54.
    Rufini V, Treglia G, Castaldi P, Perotti G, Calcagni ML, Corsello SM, et al. Comparison of 123I-MIBG SPECT-CT and 18F-DOPA PET-CT in the evaluation of patients with known or suspected recurrent paraganglioma. Nucl Med Commun. 2011;32:575–82.PubMedCrossRefGoogle Scholar
  55. 55.
    Taïeb D, Timmers HJ, Hindié E, Guillet BA, Neumann HP, Walz MK, European Association of Nuclear Medicine, et al. EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2012;39:1977–95.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Sisson JC, Shapiro B, Beierwaltes WH, Glowniak JV, Nakajo M, Mangner TJ, et al. Radiopharmaceutical treatment of malignant pheochromocytoma. J Nucl Med. 1984;25:197–206.PubMedGoogle Scholar
  57. 57.
    The role of [131I]Metaiodobenzylguanidine in the treatment of neural crest tumors. Proceedings of an international workshop. Rome, Italy, September 6–7, 1991. J Nucl Biol Med. 1991;35:177–363.Google Scholar
  58. 58.
    Loh KC, Fitzgerald PA, Matthay KK, et al. The treatment of malignant metaiodobenzylguanidine (I-131-MIBG): a comprehensive review of 116 reported patients. J Endocrinol Investig. 1997;20:648–58.CrossRefGoogle Scholar
  59. 59.
    Shapiro B, Sisson IC, Wieland DM, et al. Radiopharmaceutical therapy of malignant pheochromocytoma with I-131 metaiodobenzylguanidine: results from ten years of experience. J Nucl Biol Med. 1991;35:269–76.PubMedGoogle Scholar
  60. 60.
    Mukherjee JJ, Kaltsas GA, Islam N, Plowman PN, Foley R, Hikmat J, et al. Treatment of metastatic carcinoid tumours, phaeochromocytoma, paraganglioma and medullary carcinoma of the thyroid with (131)I-meta-iodobenzylguanidine [(131)I-mIBG]. Clin Endocrinol. 2001;55:47–60.CrossRefGoogle Scholar
  61. 61.
    Rose B, Matthay KK, Price D, et al. High-dose I-131-metaiodobenzylguanidine therapy for 12 patients with malignant pheochromocytoma. Cancer. 2003;98:239–48.PubMedCrossRefGoogle Scholar
  62. 62.
    Bomanji JB, Wong W, Gaze MN, Cassoni A, Waddington W, Solano J, Ell PJ. Treatment of neuroendocrine tumours in adults with 131I-MIBG therapy. Clin Oncol (R Coll Radiol). 2003;15(4):193–8.CrossRefGoogle Scholar
  63. 63.
    Safford SD, Coleman E, Gockerman JP, et al. Iodine-131 metaiodobenzylguanidine is an effective treatment for malignant pheochromocytoma and paraganglioma. Surgery. 2003;134:956–62.PubMedCrossRefGoogle Scholar
  64. 64.
    Sisson JC, Shulkin BL, Esfandiari NH. Courses of malignant pheochromocytoma: implications for therapy. Ann N Y Acad Sci. 2006;1073:505–11.PubMedCrossRefGoogle Scholar
  65. 65.
    Fitzgerald PA, Goldsby RE, Huberty JP, Price DC, Hawknis RA, Veatch JJ, et al. Malignant pheochromocytomas an paragangliomas. A phase II study of therapy with high-dose 131I-Metaiodobenzylguanidine (131I-MIBG). Ann N Y Acad Sci. 2006;1073:465–90.PubMedCrossRefGoogle Scholar
  66. 66.
    Gedik GK, Hoefnagel CA, Bais E, et al. (131)I-MIBG therapy in metastatic phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2008;35:725–33.PubMedCrossRefGoogle Scholar
  67. 67.
    Navalkissoor S, Alhashimi DM, Quigley AM, Caplin ME, Buscombe JR. Efficacy of using a standard activity of 131I-MIBG therapy in patients with disseminated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2009;37(5):904–12.PubMedCrossRefGoogle Scholar
  68. 68.
    Shilkrut M, Bar-Deroma R, Bar-Sela G, Berninger A, Kuten A. Low-dose iodine-131 metaiodobenzylguanidine therapy for patients with malignant pheochromocytoma and paraganglioma. Am J Clin Oncol. 2009;33(1):79–82.CrossRefGoogle Scholar
  69. 69.
    Castellani MR, Seghezzi S, Chiesa C, et al. I-131-MIBG treatment of pheochromocytoma: low versus intermediate activity regimens of therapy. Q J Nucl Med Mol Imaging. 2010;54:100–13.PubMedGoogle Scholar
  70. 70.
    Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H, Black CT, Brodeur GM, Gerbing RB, Reynolds CP. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s cancer group. N Engl J Med. 1999;341:1165–73.PubMedCrossRefGoogle Scholar
  71. 71.
    Ladenstein R, Philip T, Lasset C, Hartmann O, Garaventa A, Pinkerton R, Michon J, et al. Multivariate analysis of risk factors in stage 4 neuroblastoma patients over the age of one year treated with megatherapy and stem-cell transplantation: a report from the European bone marrow transplantation solid tumor registry. J Clin Oncol. 1998;16:953–65.PubMedCrossRefGoogle Scholar
  72. 72.
    Pinto NR, Applebaum MA, Volchenboum SL, et al. Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol. 2015;33:3008–17.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Hoefnagel CA, Voute PA, De KJ, Marcuse HR, Hoefnagel CA, Voute PA, et al. Radionuclide diagnosis and therapy of neural crest tumors using iodine-131 metaiodobenzylguanidine. J Nucl Med. 1987;28(3):308–14.PubMedGoogle Scholar
  74. 74.
    Treuner J, Gerein V, Klingebiel T, Schwabe D, Feine U, Happ J, et al. MIBG-treatment in neuroblastoma; experiences of the Tubingen/Frankfurt group. Prog Clin Biol Res. 1988;271:669–78.PubMedGoogle Scholar
  75. 75.
    Troncone L, Rufini V, Riccardi R, Lasorella A, Mastrangelo R, Troncone L, et al. The use of [131I]metaiodobenzylguanidine in the treatment of neuroblastoma after conventional therapy. J Nucl Biol Med. 1991;35(4):232–6.PubMedGoogle Scholar
  76. 76.
    Lumbroso J, Hartmann O, Schlumberger M, Lumbroso J, Hartmann O, Schlumberger M. Therapeutic use of [131I]metaiodobenzylguanidine in neuroblastoma: a phase II study in 26 patients. “Societe Francaise d’Oncologie Pediatrique” and nuclear medicine co-investigators. J Nucl Biol Med. 1991;35(4):220–3.PubMedGoogle Scholar
  77. 77.
    Hutchinson RJ, Sisson JC, Shapiro B, Miser JS, Normole D, Shulkin BL, et al. 131-I-metaiodobenzylguanidine treatment in patients with refractory advanced neuroblastoma. Am J Clin Oncol. 1992;15(3):226–32.PubMedCrossRefGoogle Scholar
  78. 78.
    Voute PA, van der Kleij AJ, De KJ, Hoefnagel CA, Tiel-van-Buul MM, Van GH. Clinical experience with radiation enhancement by hyperbaric oxygen in children with recurrent neuroblastoma stage IV. Eur J Cancer. 1995;31A:596–600.PubMedCrossRefGoogle Scholar
  79. 79.
    Castellani MR, Rottoli L, Maffioli L, Massimino M, Gasparini M, Buraggi GL, et al. Experience with palliative [131I]metaiodobenzylguanidine therapy in advanced neuroblastoma. J Nucl Biol Med. 1991;35(4):241–3.PubMedGoogle Scholar
  80. 80.
    Schwabe D, Sahm S, Gerein V, Happ J, Kropp-von RH, Maul F, et al. 131-Metaiodobenzylguanedine therapy of neuroblastoma in childhood. Eur J Pediatr. 1987;146(3):246–50.PubMedCrossRefGoogle Scholar
  81. 81.
    Klingebiel T, Berthold F, Treuner J, Schwabe D, Fischer M, Feine U, et al. Metaiodobenzylguanidine (mIBG) in treatment of 47 patients with neuroblastoma: results of the German neuroblastoma trial. Med Pediatr Oncol. 1991;19(2):84–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Claudiani F, Garaventa A, Bertolazzi L, Villavecchia GP, Cabria M, Scopinaro G, et al. [131I]metaiodobenzylguanidine therapy in advanced neuroblastoma. J Nucl Biol Med. 1991;35(4):224–7.PubMedGoogle Scholar
  83. 83.
    Lashford LS, Lewis IJ, Fielding SL, Flower MA, Meller S, Kemshead JT, et al. Phase I/II study of iodine 131 metaiodobenzylguanidine in chemoresistant neuroblastoma: a United Kingdom Children’s cancer study group investigation. J Clin Oncol. 1992;10(12):1889–96.PubMedCrossRefGoogle Scholar
  84. 84.
    Garaventa A, Bellagamba O, Lo Piccolo MS, Milanaccio C, Lanino E, Bertolazzi L, et al. 131I-metaiodobenzylguanidine (131IMIBG) therapy for residual neuroblastoma: a mono-institutional experience with 43 patients. Br J Cancer. 1999;81(8):1378–84.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kang TI, Brophy P, Hickeson M, Heyman S, Evans AE, Charron M, et al. Targeted radiotherapy with submyeloablative doses of 131I-MIBG is effective for disease palliation in highly refractory neuroblastoma. J Pediatr Hematol Oncol. 2003;25(10):769–73.PubMedCrossRefGoogle Scholar
  86. 86.
    Miano M, Garaventa A, Pizzitola MR, Piccolo MS, Dallorso S, Villavecchia GP, et al. Megatherapy combining 131I metaiodobenzylguanidine and high-dose chemotherapy with haematopoietic progenitor cell rescue for neuroblastoma. Bone Marrow Transplant. 2001;27(6):571–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Matthay KK, Yanik G, Messina J, Quach A, Huberty J, Cheng SC, et al. Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma. J Clin Oncol. 2007;25(9):1054–60.PubMedCrossRefGoogle Scholar
  88. 88.
    Matthay KK, Quach A, Huberty J, Franc BL, Hawkins RA, Jackson H, et al. Iodine-131-metaiodobenzylguanidine double infusion with autologous stem-cell rescue for neuroblastoma: a new approaches to neuroblastoma therapy phase I study. J Clin Oncol. 2009;27(7):1020–5.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Matthay KK, Weiss B, Villablanca JG, Maris JM, Yanik GA, Dubois SG, et al. Dose escalation study of no-carrier-added 131Imetaiodobenzylguanidine for relapsed or refractory neuroblastoma: new approaches to neuroblastoma therapy consortium trial. J Nucl Med. 2012;2012:1155–63.CrossRefGoogle Scholar
  90. 90.
    Klingebiel T, Bader P, Bares R, et al. Treatment of neuroblastoma stage 4 with 131I-meta-iodo-benzylguanidine, high dose chemo therapy and immunotherapy. A pilot study. Eur J Cancer. 1998;34:1398–402.PubMedCrossRefGoogle Scholar
  91. 91.
    Yanik GA, Levine JE, Matthay KK, Sisson JC, Shulkin BL, Shapiro B, et al. Pilot study of iodine-131-metaiodobenzylguanidine in combination with myeloablative chemotherapy and autologous stem-cell support for the treatment of neuroblastoma. J Clin Oncol. 2002;20(8):2142–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Matthay KK, Tan JC, Villablanca JG, et al. Phase 1 dose escalation of iodine-131-metaiodobenzylguanidine with myeloablative chemotherapy and autologous stem-cell transplantation in refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. J Clin Oncol. 2006;24:500–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Yanik GA, Villablanca J, Maris JM, et al. 131I-metaiodobenzylguanidine with intensive chemotherapy and autologous stem cell transplantation for high-risk neuroblastoma. A new approaches to neuroblastoma therapy (NANT) phase II study. Biol Blood Marrow Transplant. 2015;21:673–81.PubMedCrossRefGoogle Scholar
  94. 94.
    Mastrangelo R, Tornesello A, Lasorella A, et al. Optimal use of the 131-I- metaiodobenzylguanidine and cisplatin combination in advanced neuroblastoma. J Neurooncol. 1997;31:153–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Hoefnagel CA, DeKraker J, Valdes-Olmos RA, et al. 131I-MIBG as a first line treatment in high-risk neuroblastoma patients. Nucl Med Commun. 1994;15:712–7.PubMedCrossRefGoogle Scholar
  96. 96.
    de Kraker J, Hoefnagel KA, Verschuur AC, van Eck B, van Santen HM, Caron HN. Iodine-131-metaiodobenzylguanidine as initial induction therapy in stage 4 neuroblastoma patients over 1 year of age. Eur J Cancer. 2008;44(4):551–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Kraal KCJM, Bleeker GM, van Eck-Smit BLF, van Eijkelenburg NKA, Berthold F, van Noesel MM, Caron HN, Tytgat GAM. Feasibility, toxicity and response of upfront metaiodobenzylguanidine therapy therapy followed by German pediatric oncology group neuroblastoma 2004 protocol in newly diagnosed stage 4 neuroblastoma patients. Eur J Cancer. 2017;76:188–96.PubMedCrossRefGoogle Scholar
  98. 98.
    Castellani MR, Alessi A, Savelli G, Bombardieri E. The role of radionuclide therapy in medullary thyroid cancer. Tumori. 2003;89(5):560–2.PubMedGoogle Scholar
  99. 99.
    Castellani MR, Seregni E, Maccauro M, Chiesa C, Aliberti G, Orunesu E, Bombardieri E. MIBG for diagnosis and therapy of medullary thyroid carcinoma: is there still a role? Q J Nucl Med Mol Imaging. 2008;52(4):430–40.PubMedGoogle Scholar
  100. 100.
    Sisson JC, Yanik GA. Theranostics: evolution of the radiopharmaceutical meta-iodobenzylguanidine in endocrine tumors. Semin Nucl Med. 2012;42:171–84.PubMedCrossRefGoogle Scholar
  101. 101.
    Zuetenhorst JM, Hoefnagel CA, Bott H, et al. Evaluation of 111 in-pentetreotide,131 I-MIBG and bone scintigraphy in the detection and clinical management of bone metastases in carcinoid disease. Nucl Med Commun. 2002;23:735–41.PubMedCrossRefGoogle Scholar
  102. 102.
    Ezziddin S, Logvinski T, Yong-Hing C, et al. Factors predicting tracer uptake in somatostatin receptor and MIBG scintigraphy of metastatic gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2006;47:223–33.PubMedGoogle Scholar
  103. 103.
    Grünwald F, Ezziddin S. 131I-Metaiodobenzylguanidine therapy of neuroblastoma and other neuroendocrine tumors. Semin Nucl Med. 2010;40:153–63.PubMedCrossRefGoogle Scholar
  104. 104.
    Taal BG, Hoefnagel CA, Valdes Olmos RA, et al. Palliative effect of metaiodobenzylguanidine in metastatic carcinoid tumors. J Clin Oncol. 1996;14:1829–38.PubMedCrossRefGoogle Scholar
  105. 105.
    Forrer F, Waldherr C, Maecke HR, et al. Targeted radionuclide therapy with 90Y-DOTATOC in patients with neuroendocrine tumors. Anticancer Res. 2006;26:703–7.PubMedGoogle Scholar
  106. 106.
    Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0, Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26:2124–30.PubMedCrossRefGoogle Scholar
  107. 107.
    Madsen MT, Bushnell DL, Juweid ME, et al. Potential increased tumor dose delivery with combined 131I-MIBG and 90Y-DOTATOC treatment in neuroendocrine tumors: a theoretic model. J Nucl Med. 2006;47:660–7.PubMedGoogle Scholar
  108. 108.
    Parisi MT, Eslamy H, Park JR, Shulkin BL, Yanik GA. 131I-Metaiodobenzylguanidine theranostics in neuroblastoma: historical perspectives; practical applications. Semin Nucl Med. 2016;46:184–202.PubMedCrossRefGoogle Scholar
  109. 109.
    vanSanten HM, DeKraker J, vanEck BL, et al. High incidence of thyroid dysfunction despite prophylaxis with potassium iodide during 131I-metaiodobenzylguanidine treatment in children with neuroblastoma. Cancer. 2002;94:2081–9.CrossRefGoogle Scholar
  110. 110.
    Weiss B, Vora A, Huberty J, et al. Secondary myelodysplastic syndrome and leukemia following 131I-metaiodobenzylguanidine therapy for relapsed neuroblastoma. J Pediatr Hematol Oncol. 2003;25:543–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Quach A, Ji L, Mishra V, et al. Thyroid and hepatic function after high- dose 131I-metaiodobenzylguanidine(131I-MIBG) therapy for neuroblastoma. Pediatr Blood Cancer. 2011;56:191–201.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maria Rita Castellani
    • 1
  • Antonio Scarale
    • 1
  • Alice Lorenzoni
    • 1
  • Marco Maccauro
    • 1
  • Julia Balaguer Guill
    • 2
  • Roberto Luksch
    • 3
  1. 1.Nuclear Medicine UnitFondazione IRCCS Istituto Nazionale TumoriMilanItaly
  2. 2.Pediatric Oncology UnitHospital Universitario y Politecnico La FeValenciaSpain
  3. 3.Pediatric Oncology UnitFondazione IRCCS Istituto Nazionale TumoriMilanItaly

Personalised recommendations