Satisfiability Modulo Bounded Checking

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10395)

Abstract

We describe a new approach to find models for a computational higher-order logic with datatypes. The goal is to find counter-examples for conjectures stated in proof assistants. The technique builds on narrowing [14] but relies on a tight integration with a SAT solver to analyze conflicts precisely, eliminate sets of choices that lead to failures, and sometimes prove unsatisfiability. The architecture is reminiscent of that of an SMT solver. We present the rules of the calculus, an implementation, and some promising experimental results.

References

  1. 1.
    Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM (JACM) 47, 776–822 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard Version 2.6 (2016). http://www.SMT-LIB.org
  3. 3.
    Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in SAT modulo theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS, vol. 4246, pp. 512–526. Springer, Heidelberg (2006). doi:10.1007/11916277_35 CrossRefGoogle Scholar
  4. 4.
    Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfiability in the theory of recursive data types. Electron. Notes Theor. Comput. Sci. 174(8), 23–37 (2007)CrossRefMATHGoogle Scholar
  5. 5.
    Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell programs. ACM Sigplan Not. 46(4), 53–64 (2011)CrossRefGoogle Scholar
  6. 6.
    Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: tons of inductive problems. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS, vol. 9150, pp. 333–337. Springer, Cham (2015). doi:10.1007/978-3-319-20615-8_23 CrossRefGoogle Scholar
  7. 7.
    Claessen, K., Rosén, D.: SAT-based bounded model checking for functional programs (2016) (unpublished). https://github.com/danr/hbmc
  8. 8.
    The Coq Development Team. The Coq Proof Assistant. http://coq.inria.fr/
  9. 9.
    Cruanes, S., Blanchette, J.C.: Extending Nunchaku to dependent type theory. In: Blanchette, J.C., Kaliszyk, C. (eds.) Proceedings First International Workshop on Hammers for Type Theories, HaTT@IJCAR 2016. EPTCS, vol. 210, Coimbra, Portugal, pp. 3–12, 1 July 2016Google Scholar
  10. 10.
    Duregård, J., Jansson, P., Wang, M.: Feat: functional enumeration of algebraic types. ACM SIGPLAN Not. 47(12), 61–72 (2013)CrossRefGoogle Scholar
  11. 11.
    Hanus, M.: A unified computation model for functional and logic programming. In: Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM (1997)Google Scholar
  12. 12.
    Kaufmann, M., Moore, S.J.: ACL2: an industrial strength version of Nqthm. In: Computer Assurance, COMPASS 1996, pp. 23–34. IEEE (1996)Google Scholar
  13. 13.
    Korf, R.E.: Depth-first iterative-deepening: an optimal admissible tree search. Artif. Intell. 27(1), 97–109 (1985)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lindblad, F.: Property directed generation of first-order test data. In: Trends in Functional Programming, pp. 105–123. Citeseer (2007)Google Scholar
  15. 15.
    Paulson, L.C.: Isabelle: A Generic Theorem Prover, vol. 828. Springer, Heidelberg (1994)CrossRefMATHGoogle Scholar
  16. 16.
    Reynolds, A., Blanchette, J.C.: A decision procedure for (Co)datatypes in SMT solvers. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 197–213. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6_13 CrossRefGoogle Scholar
  17. 17.
    Reynolds, A., Blanchette, J.C., Cruanes, S., Tinelli, C.: Model finding for recursive functions in SMT. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 133–151. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1_10 Google Scholar
  18. 18.
    Runciman, C., Naylor, M., Lindblad, F.: Smallcheck and lazy smallcheck: automatic exhaustive testing for small values. ACM SIGPLAN Not. 44, 37–48 (2008). ACMCrossRefGoogle Scholar
  19. 19.
    Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 298–315. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23702-7_23 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of Lorraine, CNRS, Inria, LORIANancyFrance

Personalised recommendations