On the Combination of the Bernays–Schönfinkel–Ramsey Fragment with Simple Linear Integer Arithmetic

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10395)

Abstract

In general, first-order predicate logic extended with linear integer arithmetic is undecidable. We show that the Bernays-Schönfinkel-Ramsey fragment (\(\exists ^* \forall ^*\)-sentences) extended with a restricted form of linear integer arithmetic is decidable via finite ground instantiation. The identified ground instances can be employed to restrict the search space of existing automated reasoning procedures considerably, e.g., when reasoning about quantified properties of array data structures formalized in Bradley, Manna, and Sipma’s array property fragment. Typically, decision procedures for the array property fragment are based on an exhaustive instantiation of universally quantified array indices with all the ground index terms that occur in the formula at hand. Our results reveal that one can get along with significantly fewer instances.

Keywords

Bernays–Schönfinkel–Ramsey fragment Linear integer arithmetic Complete instantiation 

References

  1. 1.
    Abadi, A., Rabinovich, A., Sagiv, M.: Decidable fragments of many-sorted logic. J. Symbolic Comput. 45(2), 153–172 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alagi, G., Weidenbach, C.: NRCL – A model building approach to the Bernays-Schönfinkel fragment. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS, vol. 9322, pp. 69–84. Springer, Cham (2015). doi:10.1007/978-3-319-24246-0_5 CrossRefGoogle Scholar
  3. 3.
    Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 84–99. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04222-5_5 CrossRefGoogle Scholar
  4. 4.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39–57. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2_3 CrossRefGoogle Scholar
  6. 6.
    Bradley, A.R.: Safety Analysis of Systems. PhD thesis (2007)Google Scholar
  7. 7.
    Bradley, A.R., Manna, Z.: The Calculus of Computation – Decision Procedures with Applications to Verification. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer, Heidelberg (2005). doi:10.1007/11609773_28 CrossRefGoogle Scholar
  9. 9.
    Claessen, K., Lillieström, A., Smallbone, N.: Sort it out with monotonicity. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 207–221. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6_17 CrossRefGoogle Scholar
  10. 10.
    Downey, P.J.: Undecidability of Presburger Arithmetic with a Single Monadic Predicate Letter. Technical report, Center for Research in Computer Technology. Harvard University (1972)Google Scholar
  11. 11.
    Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed automata. Math. Comput. Sci. 6(4), 409–425 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ge, Y., Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4_25 CrossRefGoogle Scholar
  13. 13.
    Halpern, J.Y.: Presburger arithmetic with unary predicates is \(\Pi ^1_1\) complete. J. Symbolic Logic 56(2), 637–642 (1991)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Horbach, M., Voigt, M., Weidenbach, C.: On the combination of the Bernays-Schönfinkel-Ramsey fragment with simple linear integer arithmetic. ArXiv preprint, arXiv: 1705.08792 [cs.LO] (2017)
  15. 15.
    Korovin, K.: Inst–Gen – A modular approach to instantiation-based automated reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 239–270. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37651-1_10 CrossRefGoogle Scholar
  16. 16.
    Korovin, K.: Non-cyclic sorts for first-order satisfiability. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 214–228. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40885-4_15 CrossRefGoogle Scholar
  17. 17.
    Kroening, D., Strichman, O.: Decision Procedures. Texts in Theoretical Computer Science. An EATCS Series, 2nd edn. Springer, Heidelberg (2016)Google Scholar
  18. 18.
    Kruglov, E., Weidenbach, C.: Superposition decides the first-order logic fragment over ground theories. Math. Comput. Sci. 6(4), 427–456 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21(3), 317–353 (1980)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J. 36(5), 450–462 (1993)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53, 937–977 (2006)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Piskac, R., de Moura, L.M., Bjørner, N.: Deciding effectively propositional logic using DPLL and substitution sets. J. Autom. Reasoning 44(4), 401–424 (2010)Google Scholar
  23. 23.
    Putnam, H.: Decidability and essential undecidability. J. Symbolic Logic 22(1), 39–54 (1957)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Voigt, M., Weidenbach, C.: Bernays-Schönfinkel-Ramsey with simple bounds is NEXPTIME-complete. ArXiv preprint, arXiv:1501.07209 [cs.LO] (2015)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Max Planck Institute for InformaticsSaarbrückenGermany
  2. 2.Saarbrücken Graduate School of Computer ScienceSaarbrückenGermany

Personalised recommendations