Monte Carlo Tableau Proof Search

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10395)

Abstract

We study Monte Carlo Tree Search to guide proof search in tableau calculi. This includes proposing a number of proof-state evaluation heuristics, some of which are learnt from previous proofs. We present an implementation based on the leanCoP prover. The system is trained and evaluated on a large suite of related problems coming from the Mizar proof assistant, showing that it is capable to find new and different proofs.

References

  1. 1.
    Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning 52(2), 191–213 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alama, J., Kühlwein, D., Urban, J.: Automated and human proofs in general mathematics: an initial comparison. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 37–45. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28717-6_6 CrossRefGoogle Scholar
  3. 3.
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1_14 CrossRefGoogle Scholar
  4. 4.
    Biere, A., Dragan, I., Kovács, L., Voronkov, A.: Experimenting with SAT solvers in Vampire. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds.) MICAI 2014. LNCS, vol. 8856, pp. 431–442. Springer, Cham (2014). doi:10.1007/978-3-319-13647-9_39 Google Scholar
  5. 5.
    Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formaliz. Reasoning 9(1), 101–148 (2016)MathSciNetGoogle Scholar
  6. 6.
    Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3_11 CrossRefGoogle Scholar
  7. 7.
    Browne, C., Powley, E.J., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P., Tavener, S., Liebana, D.P., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)CrossRefGoogle Scholar
  8. 8.
    Färber, M., Brown, C.E.: Internal guidance for Satallax. In: Olivetti and Tiwari [17], pp. 349–361Google Scholar
  9. 9.
    Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Ghahramani, Z. (ed.) ICML, vol. 227, pp. 273–280. ACM, New York (2007)CrossRefGoogle Scholar
  10. 10.
    Hähnle, R.: Tableaux and related methods. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, pp. 100–178. Elsevier and MIT Press, New York (2001)Google Scholar
  11. 11.
    Hoder, K., Reger, G., Suda, M., Voronkov, A.: Selecting the selection. In: Olivetti and Tiwari [17], pp. 313–329Google Scholar
  12. 12.
    Kaliszyk, C., Schulz, S., Urban, J., Vyskočil, J.: System description: E.T. 0.1. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 389–398. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6_27 CrossRefGoogle Scholar
  13. 13.
    Kaliszyk, C., Urban, J.: FEMaLeCoP: fairly efficient machine learning connection prover. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 88–96. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7_7 CrossRefGoogle Scholar
  14. 14.
    Kaliszyk, C., Urban, J., Vyskocil, J.: Certified connection tableaux proofs for HOL Light and TPTP. In: Leroy, X., Tiu, A. (eds.) CPP, pp. 59–66. ACM, New York (2015)Google Scholar
  15. 15.
    Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). doi:10.1007/11871842_29 CrossRefGoogle Scholar
  16. 16.
    Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Ganzinger Festschrift. LNCS, vol. 7797, pp. 239–270. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37651-1_10 CrossRefGoogle Scholar
  17. 17.
    Olivetti, N., Tiwari, A. (eds.): IJCAR 2016. LNCS (LNAI), vol. 9706. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1 MATHGoogle Scholar
  18. 18.
    Otten, J.: leanCoP 2.0 and ileanCoP 1.2: high performance lean theorem proving in classical and intuitionistic logic (system descriptions). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 283–291. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71070-7_23 CrossRefGoogle Scholar
  19. 19.
    Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2–3), 159–182 (2010)MathSciNetMATHGoogle Scholar
  20. 20.
    Otten, J.: nanoCoP: a non-clausal connection prover. In: Olivetti and Tiwari [17], pp. 302–312Google Scholar
  21. 21.
    Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo tree search. In: Walsh, T. (ed.) IJCAI, pp. 649–654. IJCAI/AAAI, New York (2011)Google Scholar
  22. 22.
    Schadd, M.P.D., Winands, M.H.M., Tak, M.J.W., Uiterwijk, J.W.H.M.: Single-player Monte-Carlo tree search for SameGame. Knowl.-Based Syst. 34, 3–11 (2012)CrossRefGoogle Scholar
  23. 23.
    Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)MATHGoogle Scholar
  24. 24.
    Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_49 CrossRefGoogle Scholar
  25. 25.
    Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–503 (2016)CrossRefGoogle Scholar
  26. 26.
    Sutcliffe, G.: The 6th IJCAR automated theorem proving system competition - CASC-J6. AI Commun. 26(2), 211–223 (2013)MathSciNetGoogle Scholar
  27. 27.
    Urban, J., Hoder, K., Voronkov, A.: Evaluation of automated theorem proving on the Mizar Mathematical Library. In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 155–166. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15582-6_30 CrossRefGoogle Scholar
  28. 28.
    Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP machine learning connection prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 263–277. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22119-4_21 CrossRefGoogle Scholar
  29. 29.
    Wisniewski, M., Steen, A., Benzmüller, C.: LeoPARD — a generic platform for the implementation of higher-order reasoners. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS, vol. 9150, pp. 325–330. Springer, Cham (2015). doi:10.1007/978-3-319-20615-8_22 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Universität InnsbruckInnsbruckAustria
  2. 2.Czech Technical University in PraguePragueCzech Republic

Personalised recommendations