Advertisement

A Transfinite Knuth–Bendix Order for Lambda-Free Higher-Order Terms

  • Heiko Becker
  • Jasmin Christian Blanchette
  • Uwe Waldmann
  • Daniel Wand
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10395)

Abstract

We generalize the Knuth–Bendix order (KBO) to higher-order terms without \(\lambda \)-abstraction. The restriction of this new order to first-order terms coincides with the traditional KBO. The order has many useful properties, including transitivity, the subterm property, compatibility with contexts (monotonicity), stability under substitution, and well-foundedness. Transfinite weights and argument coefficients can also be supported. The order appears promising as the basis of a higher-order superposition calculus.

Notes

Acknowledgment

We are grateful to Stephan Merz, Tobias Nipkow, and Christoph Weidenbach for making this research possible; to Mathias Fleury and Dmitriy Traytel for helping us formalize the syntactic ordinals; to Andrei Popescu and Christian Sternagel for advice with extending a partial well-founded order to a total one in the mechanized proof of Lemma 3; to Andrei Voronkov for the enlightening discussion about KBO at the IJCAR 2016 banquet; and to Carsten Fuhs, Mark Summerfield, and the anonymous reviewers for suggesting many textual improvements.

Blanchette has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 713999, Matryoshka). Wand is supported by the Deutsche Forschungsgemeinschaft (DFG) grant Hardening the Hammer (NI 491/14-1).

References

  1. 1.
    Andrews, P.B., Cohen, E.L.: Theorem proving in type theory. In: Reddy, R. (ed.) IJCAI 1977, p. 566. William Kaufmann (1977)Google Scholar
  2. 2.
    Aoto, T., Yamada, T.: Termination of simply typed term rewriting by translation and labelling. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 380–394. Springer, Heidelberg (2003). doi: 10.1007/3-540-44881-0_27 CrossRefGoogle Scholar
  3. 3.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. J. Autom. Reasoning 47(4), 451–479 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Banâtre, J.-P., Fradet, P., Radenac, Y.: Generalised multisets for chemical programming. Math. Struct. Comput. Sci. 16(4), 557–580 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: Formalization of Knuth-Bendix orders for lambda-free higher-order terms. Archive of Formal Proofs (2016). Formal proof development, https://isa-afp.org/entries/Lambda_Free_KBOs.shtml
  7. 7.
    Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: Transfinite Knuth-Bendix orders for lambda-free higher-order terms. Tech. report (2017), http://cs.vu.nl/~jbe248/lambda_free_kbo_rep.pdf
  8. 8.
    Beeson, M.: Lambda logic. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS, vol. 3097, pp. 460–474. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-25984-8_34 CrossRefGoogle Scholar
  9. 9.
    Benzmüller, C., Kohlhase, M.: Extensional higher-order resolution. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS, vol. 1421, pp. 56–71. Springer, Heidelberg (1998). doi: 10.1007/BFb0054248 CrossRefGoogle Scholar
  10. 10.
    Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.H. (ed.) Computational Logic. Handbook of the History of Logic, vol. 9, pp. 215–254. Elsevier (2014)Google Scholar
  11. 11.
    Blanchette, J.C., Fleury, M., Traytel, D.: Formalization of nested multisets, hereditary multisets, and syntactic ordinals. Archive of Formal Proofs (2016). Formal proof development, https://isa-afp.org/entries/Nested_Multisets_Ordinals.shtml
  12. 12.
    Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly modular (Co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Cham (2014). doi: 10.1007/978-3-319-08970-6_7 Google Scholar
  13. 13.
    Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formalized Reasoning 9(1), 101–148 (2016)MathSciNetGoogle Scholar
  14. 14.
    Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14052-5_11 CrossRefGoogle Scholar
  15. 15.
    Blanchette, J.C., Waldmann, U., Wand, D.: Formalization of recursive path orders for lambda-free higher-order terms. Archive of Formal Proofs (2016). Formal proof development, https://isa-afp.org/entries/Lambda_Free_RPOs.shtml
  16. 16.
    Blanchette, J.C., Waldmann, U., Wand, D.: A lambda-free higher-order recursive path order. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 461–479. Springer, Heidelberg (2017). doi: 10.1007/978-3-662-54458-7_27 CrossRefGoogle Scholar
  17. 17.
    Blanqui, F., Jouannaud, J.-P., Rubio, A.: The computability path ordering. Log. Meth. Comput. Sci. 11(4) (2015)Google Scholar
  18. 18.
    Bofill, M., Borralleras, C., Rodríguez-Carbonell, E., Rubio, A.: The recursive path and polynomial ordering for first-order and higher-order terms. J. Log. Comput. 23(1), 263–305 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bofill, M., Rubio, A.: Paramodulation with non-monotonic orderings and simplification. J. Autom. Reasoning 50(1), 51–98 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM 22(8), 465–476 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ferreira, M.C.F., Zantema, H.: Well-foundedness of term orderings. In: Dershowitz, N., Lindenstrauss, N. (eds.) CTRS 1994. LNCS, vol. 968, pp. 106–123. Springer, Heidelberg (1995). doi: 10.1007/3-540-60381-6_7 CrossRefGoogle Scholar
  22. 22.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS, vol. 3717, pp. 216–231. Springer, Heidelberg (2005). doi: 10.1007/11559306_12 CrossRefGoogle Scholar
  23. 23.
    Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15(2), 81–91 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hirokawa, N., Middeldorp, A., Zankl, H.: Uncurrying for termination and complexity. J. Autom. Reasoning 50(3), 279–315 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Huet, G., Oppen, D.C.: Equations and rewrite rules: a survey. In: Book, R.V. (ed.) Formal Language Theory: Perspectives and Open Problems, pp. 349–405. Academic Press (1980)Google Scholar
  26. 26.
    Huet, G.P.: A mechanization of type theory. In: Nilsson, N.J. (ed.) International Joint Conference on Artificial Intelligence (IJCAI 1973), pp. 139–146. William Kaufmann (1973)Google Scholar
  27. 27.
    Hughes, R.J.M.: Super-combinators: a new implementation method for applicative languages. In: LFP 1982, pp. 1–10. ACM Press (1982)Google Scholar
  28. 28.
    Jouannaud, J.-P., Rubio, A.: Polymorphic higher-order recursive path orderings. J. ACM 54(1), 2:1–2:48 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kennaway, R., Klop, J.W., Sleep, M.R., de Vries, F.: Comparing curried and uncurried rewriting. J. Symbolic Comput. 21(1), 15–39 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)Google Scholar
  31. 31.
    Kop, C.: Higher Order Termination. Ph.D. thesis, Vrije Universiteit Amsterdam (2012)Google Scholar
  32. 32.
    Kop, C., Raamsdonk, F.: A higher-order iterative path ordering. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS, vol. 5330, pp. 697–711. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-89439-1_48 CrossRefGoogle Scholar
  33. 33.
    Kovács, L., Moser, G., Voronkov, A.: On transfinite Knuth-Bendix orders. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 384–399. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22438-6_29 CrossRefGoogle Scholar
  34. 34.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39799-8_1 CrossRefGoogle Scholar
  35. 35.
    Lifantsev, M., Bachmair, L.: An LPO-based termination ordering for higher-order terms without \(\lambda \)-abstraction. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 277–293. Springer, Heidelberg (1998). doi: 10.1007/BFb0055142 CrossRefGoogle Scholar
  36. 36.
    Löchner, B.: Things to know when implementing KBO. J. Autom. Reasoning 36(4), 289–310 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Ludwig, M., Waldmann, U.: An extension of the Knuth-Bendix ordering with LPO-like properties. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 348–362. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75560-9_26 CrossRefGoogle Scholar
  38. 38.
    McCune, W.: Otter 3.3 reference manual. Technical. Report 263 (2003)Google Scholar
  39. 39.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443. Elsevier and MIT Press (2001)Google Scholar
  40. 40.
    Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). doi: 10.1007/3-540-45949-9 zbMATHGoogle Scholar
  41. 41.
    Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45221-5_49 CrossRefGoogle Scholar
  42. 42.
    Sternagel, C., Thiemann, R.: Executable multivariate polynomials. Archive of Formal Proofs (2010). Formal proof development, https://isa-afp.org/entries/Polynomials.shtml
  43. 43.
    Sternagel, C., Thiemann, R.: Generalized and formalized uncurrying. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 243–258. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24364-6_17 CrossRefGoogle Scholar
  44. 44.
    Sternagel, C., Thiemann, R.: Formalizing Knuth-Bendix orders and Knuth-Bendix completion. In: van Raamsdonk, F. (ed.) RTA 2013, vol. 21. LIPIcs, pp. 287–302. Schloss Dagstuhl (2013)Google Scholar
  45. 45.
    Sultana, N., Blanchette, J.C., Paulson, L.C.: LEO-II and Satallax on the Sledgehammer test bench. J. Applied Logic 11(1), 91–102 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Toyama, Y.: Termination of S-expression rewriting systems: lexicographic path ordering for higher-order terms. In: Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 40–54. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-25979-4_3 CrossRefGoogle Scholar
  47. 47.
    Turner, D.A.: A new implementation technique for applicative languages. Softw. Pract. Experience 9(1), 31–49 (1979)CrossRefzbMATHGoogle Scholar
  48. 48.
    Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 140–145. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02959-2_10 CrossRefGoogle Scholar
  49. 49.
    Wisniewski, M., Steen, A., Kern, K., Benzmüller, C.: Effective normalization techniques for HOL. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS, vol. 9706, pp. 362–370. Springer, Cham (2016). doi: 10.1007/978-3-319-40229-1_25 Google Scholar
  50. 50.
    Zankl, H., Winkler, S., Middeldorp, A.: Beyond polynomials and Peano arithmetic–automation of elementary and ordinal interpretations. J. Symb. Comput. 69, 129–158 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Zantema, H.: Termination. In: Bezem, M., Klop, J.W., de Vrijer, R. (eds.) Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55, pp. 181–259. Cambridge University Press, Cambridge (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Heiko Becker
    • 1
  • Jasmin Christian Blanchette
    • 2
    • 3
    • 4
  • Uwe Waldmann
    • 4
  • Daniel Wand
    • 4
    • 5
  1. 1.Max-Planck-Institut für SoftwaresystemeSaarbrückenGermany
  2. 2.Vrije Universiteit AmsterdamAmsterdamThe Netherlands
  3. 3.Inria Nancy – Grand EstVillers-lès-NancyFrance
  4. 4.Max-Planck-Institut für InformatikSaarbrückenGermany
  5. 5.Technische Universität MünchenMunichGermany

Personalised recommendations