WorkflowFM: A Logic-Based Framework for Formal Process Specification and Composition

  • Petros PapapanagiotouEmail author
  • Jacques Fleuriot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10395)


We present a logic-based system for process specification and composition named WorkflowFM. It relies on an embedding of Classical Linear Logic and the so-called proofs-as-processes paradigm within the proof assistant HOL Light. This enables the specification of abstract processes as logical sequents and their composition via formal proof. The result is systematically translated to an executable workflow with formally verified consistency, rigorous resource accounting, and deadlock freedom. The 3-tiered server/client architecture of WorkflowFM allows multiple concurrent users to interact with the system through a purely diagrammatic interface, while the proof is performed automatically on the server.


Process modelling Workflows Theorem proving Classical linear logic 



This research is supported by the following EPSRC grants: The Integration and Interaction of Multiple Mathematical Reasoning Processes EP/N014758/1, SOCIAM: The Theory and Practice of Social Machines EP/J017728/1, and ProofPeer: Collaborative Theorem Proving EP/L011794/1.


  1. 1.
    Abramsky, S.: Proofs as processes. Theoret. Comput. Sci. 135(1), 5–9 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alexandru, C., Clutterbuck, D., Papapanagiotou, P., Fleuriot, J., Manataki, A.: A Step Towards the Standardisation of HIV Care Practices, November 2016Google Scholar
  3. 3.
    Bellin, G., Scott, P.: On the \(\pi \)-calculus and linear logic. TCS 135(1), 11–65 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bog, A., Puhlmann, F.: A tool for the simulation of \(\pi \)-calculus systems. Tech. rep., Open.BPM, Geschäftsprozessmanagement mit Open Source-Technologien, Hamburg, Germany (2006)Google Scholar
  5. 5.
    Boulton, R.J., Gordon, A.D., Gordon, M.J.C., Harrison, J., Herbert, J., Tassel, J.V.: Experience with embedding hardware description languages in HOL. In: Stavridou, V., Melham, T.F., Boute, R.T. (eds.) TPCD. IFIP Transactions, vol. A-10, pp. 129–156. North-Holland (1992)Google Scholar
  6. 6.
    Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15375-4_16 CrossRefGoogle Scholar
  7. 7.
    Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz— open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). doi: 10.1007/3-540-45848-4_57 CrossRefGoogle Scholar
  8. 8.
    Ferg, S.: Event-Driven Programming: Introduction, Tutorial, History (2016).
  9. 9.
    Girard, J.Y.: Linear logic: its syntax and semantics. In: Girard, J.Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic, vol. 222. London Mathematical Society Lecture Notes Series. Cambridge University Press (1995),
  10. 10.
    Habert, L., Notin, J.-M., Galmiche, D.: LINK: a proof environment based on proof nets. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS, vol. 2381, pp. 330–334. Springer, Heidelberg (2002). doi: 10.1007/3-540-45616-3_23 CrossRefGoogle Scholar
  11. 11.
    Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). doi: 10.1007/BFb0031814 CrossRefGoogle Scholar
  12. 12.
    Howard, W.A.: The formulas-as-types notion of construction. In: Seldin, J.P., Hindley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism, pp. 479–490. Academic Press (1980)Google Scholar
  13. 13.
    JGraph Ltd: The JGraph homepage (2013).
  14. 14.
    Miller, D.: Forum: a multiple-conclusion specification logic. TCS 165(1), 201–232 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Milner, R.: Communicating and Mobile Systems: The \(\pi \)-Calculus. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  16. 16.
    Object Management Group: Business Process Model and Notation (BPMN), version 2.0 (2011).
  17. 17.
    Papapanagiotou, P., Fleuriot, J.: Formal verification of collaboration patterns in healthcare. Behav. Inf. Technol. 33(12), 1278–1293 (2014)CrossRefGoogle Scholar
  18. 18.
    Papapanagiotou, P., Fleuriot, J.: Modelling and implementation of correct by construction healthcare workflows. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 28–39. Springer, Cham (2015). doi: 10.1007/978-3-319-15895-2_3 Google Scholar
  19. 19.
    Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modelling Language User Guide. Addison-Wesley (1999)Google Scholar
  20. 20.
    Tammet, T.: Proof strategies in linear logic. J. Autom. Reasoning 12(3), 273–304 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Troelstra, A.S.: Lectures on Linear Logic. CSLI Lecture Notes, vol. 29, Stanford (1992)Google Scholar
  22. 22.
    Wadler, P.: Propositions as sessions. In: Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming, pp. 273–286. ACM (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations