Scavenger 0.1: A Theorem Prover Based on Conflict Resolution

  • Daniyar Itegulov
  • John Slaney
  • Bruno Woltzenlogel Paleo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10395)


This paper introduces Scavenger, the first theorem prover for pure first-order logic without equality based on the new conflict resolution calculus. Conflict resolution has a restricted resolution inference rule that resembles (a first-order generalization of) unit propagation as well as a rule for assuming decision literals and a rule for deriving new clauses by (a first-order generalization of) conflict-driven clause learning.



We thank Ezequiel Postan for his implementation of TPTP parsers for Skeptik [10], which we have reused in Scavenger. We are grateful to Albert A.V. Giegerich, Aaron Stump and Geoff Sutcliffe for all their help in setting up our experiments in StarExec. This research was partially funded by the Australian Government through the Australian Research Council and by the Google Summer of Code 2016 program. Daniyar Itegulov was financially supported by the Russian Scientific Foundation (grant 15-14-00066).


  1. 1.
    Alagi, G., Weidenbach, C.: NRCL - a model building approach to the Bernays-Schönfinkel fragment. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS, vol. 9322, pp. 69–84. Springer, Cham (2015). doi: 10.1007/978-3-319-24246-0_5 CrossRefGoogle Scholar
  2. 2.
    Baumgartner, P.: A first order Davis-Putnam-Longeman-Loveland procedure. In: Proceedings of the 17th International Conference on Automated Deduction (CADE), pp. 200–219 (2000)Google Scholar
  3. 3.
    Baumgartner, P.: Model evolution-based theorem proving. IEEE Intell. Syst. 29(1), 4–10 (2014). CrossRefGoogle Scholar
  4. 4.
    Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS, vol. 4246, pp. 572–586. Springer, Heidelberg (2006). doi: 10.1007/11916277_39 CrossRefGoogle Scholar
  5. 5.
    Baumgartner, P., Tinelli, C.: The model evolution calculus. In: Baader, F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 350–364. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45085-6_32 CrossRefGoogle Scholar
  6. 6.
    Bonacina, M.P., Plaisted, D.A.: Constraint manipulation in SGGS. In: Kutsia, T., Ringeissen, C. (eds.) Proceedings of the Twenty-Eighth Workshop on Unification (UNIF), Seventh International Joint Conference on Automated Reasoning (IJCAR) and Sixth Federated Logic Conference (FLoC), pp. 47–54, Technical reports of the Research Institute for Symbolic Computation, Johannes Kepler Universität Linz (2014).
  7. 7.
    Bonacina, M.P., Plaisted, D.A.: SGGS theorem proving: an exposition. In: Schulz, S., Moura, L.D., Konev, B. (eds.) Proceedings of the Fourth Workshop on Practical Aspects in Automated Reasoning (PAAR), Seventh International Joint Conference on Automated Reasoning (IJCAR) and Sixth Federated Logic Conference (FLoC), July 2014. EasyChair Proceedings in Computing (EPiC), vol. 31, pp. 25–38, July 2015Google Scholar
  8. 8.
    Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning: model representation. J. Autom. Reasoning 56(2), 113–141 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning: Inference system and completeness. J. Autom. Reasoning, 1–54 (2017).
  10. 10.
    Boudou, J., Fellner, A., Woltzenlogel Paleo, B.: Skeptik: a proof compression system. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 374–380. Springer, Cham (2014). doi: 10.1007/978-3-319-08587-6_29 Google Scholar
  11. 11.
    Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31365-3_11 CrossRefGoogle Scholar
  12. 12.
    Claessen, K.: The anatomy of Equinox - an extensible automated reasoning tool for first-order logic and beyond (talk abstract). In: Proceedings of the 23rd International Conference on Automated Deduction (CADE-23), pp. 1–3 (2011)Google Scholar
  13. 13.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7, 201–215 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hodgson, K., Slaney, J.K.: System description: SCOTT-5. In: Automated Reasoning, First International Joint Conference, IJCAR 2001, Siena, Italy, June 18–23, 2001, Proceedings, pp. 443–447 (2001).
  15. 15.
    Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 292–298. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-71070-7_24 CrossRefGoogle Scholar
  16. 16.
    Korovin, K.: Inst-Gen - a modular approach to instantiation-based automated reasoning. In: Programming Logics, pp. 239–270 (2013)Google Scholar
  17. 17.
    Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict resolution. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 509–523. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04244-7_41 CrossRefGoogle Scholar
  18. 18.
    João Marques-Silva, I.L., Malik, S.: Conflict-driven clause learning SAT solvers. In: Handbook of Satisfiability, pp. 127–149 (2008)Google Scholar
  19. 19.
    Martin Davis, G.L., Loveland, D.: A machine program for theorem proving. Commun. ACM 57, 394–397 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    McCharen, J., Overbeek, R., Wos, L.: Complexity and related enhancements for automated theorem-proving programs. Comput. Math. Appl. 2, 1–16 (1976)zbMATHGoogle Scholar
  21. 21.
    McCune, W.: Otter 2.0. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 663–664. Springer, Heidelberg (1990). doi: 10.1007/3-540-52885-7_131 Google Scholar
  22. 22.
    McCune, W.: OTTER 3.3 reference manual. CoRR cs.SC/0310056 (2003),.
  23. 23.
    Nieuwenhuis, R., Hillenbrand, T., Riazanov, A., Voronkov, A.: On the evaluation of indexing techniques for theorem proving. In: Automated Reasoning, First International Joint Conference, IJCAR 2001, Siena, Italy, June 18–23, 2001, Proceedings, pp. 257–271 (2001). doi:
  24. 24.
    Nivelle, H., Meng, J.: Geometric resolution: a proof procedure based on finite model search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130, pp. 303–317. Springer, Heidelberg (2006). doi: 10.1007/11814771_28 CrossRefGoogle Scholar
  25. 25.
    Slaney, J., Woltzenlogel Paleo, B.: Conflict resolution: a first-order resolution calculus with decision literals and conflict-driven clause learning. J. Autom. Reasoning, 1–24 (2017).
  26. 26.
    Slaney, J.K.: SCOTT: a model-guided theorem prover. In: Bajcsy, R. (ed.) Proceedings of the 13th International Joint Conference on Artificial Intelligence. Chambéry, France, August 28 - September 3, 1993, pp. 109–115. Morgan Kaufmann (1993).
  27. 27.
    Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 367–373. Springer, Cham (2014). doi: 10.1007/978-3-319-08587-6_28 Google Scholar
  28. 28.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)CrossRefzbMATHGoogle Scholar
  29. 29.
    Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham (2014). doi: 10.1007/978-3-319-08867-9_46 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Daniyar Itegulov
    • 1
  • John Slaney
    • 2
  • Bruno Woltzenlogel Paleo
    • 2
  1. 1.ITMO UniversitySt. PetersburgRussia
  2. 2.Australian National UniversityCanberraAustralia

Personalised recommendations