Theorem Proving for Metric Temporal Logic over the Naturals

  • Ullrich Hustadt
  • Ana Ozaki
  • Clare Dixon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10395)


We study translations from Metric Temporal Logic (MTL) over the natural numbers to Linear Temporal Logic (LTL). In particular, we present two approaches for translating from MTL to LTL which preserve the ExpSpace complexity of the satisfiability problem for MTL. In each of these approaches we consider the case where the mapping between states and time points is given by (1) a strict monotonic function and by (2) a non-strict monotonic function (which allows multiple states to be mapped to the same time point). Our translations allow us to utilise LTL solvers to solve satisfiability and we empirically compare the translations, showing in which cases one performs better than the other.


  1. 1.
    Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Probabilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed. Comput. Syst. (TECS) 12(2s), 95: 1–95: 30 (2013)Google Scholar
  2. 2.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf. Comput. 104(1), 35–77 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bersani, M.M., Rossi, M., Pietro, P.S.: A tool for deciding the satisfiability of continuous-time metric temporal logic. Acta Informatica 53(2), 171–206 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: Proceedings of LICS 2007, pp. 109–120. IEEE (2007)Google Scholar
  7. 7.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002). doi: 10.1007/3-540-45657-0_29 CrossRefGoogle Scholar
  8. 8.
    Dauzère-Pérès, S., Paulli, J.: An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search. Ann. Oper. Res. 70, 281–306 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dixon, C., Fisher, M., Konev, B.: Temporal logic with capacity constraints. In: Konev, B., Wolter, F. (eds.) FroCoS 2007. LNCS, vol. 4720, pp. 163–177. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74621-8_11 CrossRefGoogle Scholar
  10. 10.
    Fisher, M.: A normal form for temporal logics and its applications in theorem-proving and execution. J. Logic Comput. 7(4), 429–456 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In: Proceedings of POPL 1980, pp. 163–173. ACM (1980)Google Scholar
  12. 12.
    Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners. Artif. Intell. 173(5—-6), 619–668 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Goré, R.: And-or tableaux for fixpoint logics with converse: LTL, CTL, PDL and CPDL. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 26–45. Springer, Cham (2014). doi: 10.1007/978-3-319-08587-6_3 Google Scholar
  14. 14.
    Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Labs Tech. J. 45(9), 1563–1581 (1966)CrossRefzbMATHGoogle Scholar
  15. 15.
    Gunadi, H., Tiu, A.: Efficient runtime monitoring with metric temporal logic: a case study in the android operating system. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 296–311. Springer, Cham (2014). doi: 10.1007/978-3-319-06410-9_21 CrossRefGoogle Scholar
  16. 16.
    Hustadt, U., Konev, B.: TRP++ 2.0: a temporal resolution prover. In: Baader, F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 274–278. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45085-6_21 CrossRefGoogle Scholar
  17. 17.
    Karaman, S., Frazzoli, E.: Vehicle routing problem with metric temporal logic specifications. In: Proceedings of CDC 2008, pp. 3953–3958. IEEE (2008)Google Scholar
  18. 18.
  19. 19.
  20. 20.
    Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85778-5_1 CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of SFCS 1977, pp. 46–57. IEEE (1977)Google Scholar
  23. 23.
    Schuppan, V., Darmawan, L.: Evaluating LTL satisfiability solvers. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 397–413. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24372-1_28 CrossRefGoogle Scholar
  24. 24.
    Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32(3), 733–749 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Suda, M., Weidenbach, C.: A PLTL-prover based on labelled superposition with partial model guidance. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 537–543. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31365-3_42 CrossRefGoogle Scholar
  26. 26.
    Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications. Electronic Notes Theoret. Comput. Sci. 113, 145–162 (2005)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siekmann, J.H., et al. (eds.) Automation of Reasoning, pp. 466–483. Springer, Heidelberg (1983)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.Center for Advancing Electronics Dresden (cfaed)TU DresdenDresdenGermany

Personalised recommendations