Detecting Inconsistencies in Large First-Order Knowledge Bases

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10395)

Abstract

Large formalizations carry the risk of inconsistency, and hence may lead to instances of spurious reasoning. This paper describes a new approach and tool that automatically probes large first-order axiomatizations for inconsistency, by selecting subsets of the axioms centered on certain function and predicate symbols, and handling the subsets to a first-order theorem prover to test for unsatisfiability. The tool has been applied to several large axiomatizations, inconsistencies have been found, inconsistent cores extracted, and semi-automatic analysis of the inconsistent cores has helped to pinpoint the axioms that appear to be the underlying cause of inconsistency.

References

  1. 1.
    Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning 52(2), 191–213 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alemi, A.A., Chollet, F., Eén, N., Irving, G., Szegedy, C., Urban, J.: DeepMath - deep sequence models for premise selection. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 5–10, 2016, Barcelona, Spain, pp. 2235–2243 (2016). http://papers.nips.cc/paper/6280-deepmath-deep-sequence-models-for-premise-selection
  3. 3.
    Benson, T.: Principles of Health Interoperability: SNOMED CT, HL7 and FHIR (Health Information Technology Standards). Springer, London (2016)CrossRefGoogle Scholar
  4. 4.
    Benzmüller, C., Woltzenlogel Paleo, B.: Automating gödel’s ontological proof of god’s existence with higher-order automated theorem provers. In: Schaub, T. (ed.) Proceedings of the 21st European Conference on Artificial Intelligence, pp. 93–98 (2014)Google Scholar
  5. 5.
    Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - a cooperative automatic theorem prover for classical higher-order logic (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71070-7_14 CrossRefGoogle Scholar
  6. 6.
    Benzmller, C., Pease, A.: Higher-order aspects and context in SUMO. In: Jos Lehmann, I.J.V., Bundy, A. (eds.) Special issue on Reasoning with context in the Semantic Web, vol. 12–13. Science, Services and Agents on the World Wide Web (2012)Google Scholar
  7. 7.
    Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formalized Reasoning 9(1), 101–148 (2016). http://dx.doi.org/10.6092/issn.1972-5787/4593 MathSciNetGoogle Scholar
  8. 8.
    Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14052-5_11 CrossRefGoogle Scholar
  9. 9.
    Brown, C.E.: Reducing higher-order theorem proving to a sequence of SAT problems. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 147–161. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6_13 CrossRefGoogle Scholar
  10. 10.
    Chaudhri, V., Inclezan, D.: Representing states in a biology textbook. In: Leora Morgenstern, L., Patkos, T., Sloan, R. (eds.) Proceedings of 12th International Symposium on Logical Formalizations of Commonsense Reasoning. AAAI Press (2015)Google Scholar
  11. 11.
    Chaudhuri, S., Farzan, A. (eds.): Proceedings of the 28th International Conference on Computer Aided Verification. LNCS, vol. 9779–9780. Springer, Heidelberg (2016)Google Scholar
  12. 12.
    Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized Reasoning 3(2), 153–245 (2010)MathSciNetMATHGoogle Scholar
  13. 13.
    Groth, P., Simperi, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.): Proceedings of the 15th International Semantic Web Conference. LNCS, vol. 9981–9982. Springer, Heidelberg (2016)Google Scholar
  14. 14.
    Hales, T., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L., Kaliszyk, C., Magron, V., McLaughlin, S., Nguyen, T.T., et al.: A formal proof of the Kepler conjecture. arXiv preprint (2015). arXiv:1501.02155
  15. 15.
    Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–314. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6_23 CrossRefGoogle Scholar
  16. 16.
    Kaliszyk, C., Urban, J.: Stronger automation for Flyspeck by feature weighting and strategy evolution. In: Blanchette, J.C., Urban, J. (eds.) PxTP 2013. EPiC Series, vol. 14, pp. 87–95. EasyChair (2013)Google Scholar
  17. 17.
    Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reasoning 53(2), 173–213 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. J. Autom. Reasoning 55(3), 245–256 (2015). http://dx.doi.org/10.1007/s10817-015-9330-8 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kinyon, M., Veroff, R., Vojtěchovský, P.: Loops with abelian inner mapping groups: an application of automated deduction. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS, vol. 7788, pp. 151–164. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36675-8_8 CrossRefGoogle Scholar
  20. 20.
    Klein, G., Nipkow, T., Paulson, L.: The archive of formal proofs (2010). https://www.isa-afp.org/
  21. 21.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_1 CrossRefGoogle Scholar
  22. 22.
    Kühlwein, D., Laarhoven, T., Tsivtsivadze, E., Urban, J., Heskes, T.: Overview and evaluation of premise selection techniques for large theory mathematics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 378–392. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3_30 CrossRefGoogle Scholar
  23. 23.
    Lenat, D.: CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 35–38 (1995)Google Scholar
  24. 24.
    McCune, W.: Solution of the robbins problem. J. Autom. Reasoning 19(3), 263–276 (1997)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution problems. J. Appl. Logics 7(1), 41–57 (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Niles, I., Pease, A.: Toward a standard upper ontology. In: Welty, C., Smith, B. (eds.) Proceedings of the 2nd International Conference on Formal Ontology in Information Systems (FOIS-2001) (2001)Google Scholar
  27. 27.
    Paulsson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: Sutcliff, G., Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on the Implementation of Logics (IWIL-2010), Yogyakarta, Indonesia. EPiC, vol. 2 (2012)Google Scholar
  28. 28.
    Pease, A., Sutcliffe, G.: First order reasoning on a large ontology. In: Urban, J., Sutcliffe, G., Schulz, S. (eds.) Proceedings of the CADE-21 Workshop on Empirically Successful Automated Reasoning in Large Theories, pp. 61–70. No. 257 in CEUR Workshop Proceedings (2007)Google Scholar
  29. 29.
    Pease, A.: Ontology: A Practical Guide. Articulate Software Press, Angwin (2011)Google Scholar
  30. 30.
    Pease, A., Benzmüller, C.: Sigma: an integrated development environment for logical theories. AI Commun. 26, 9–97 (2013)Google Scholar
  31. 31.
    Pease, A., Niles, I., Li, J.: The suggested upper merged ontology: a large ontology for the semantic web and its applications. In: Working Notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web (2002)Google Scholar
  32. 32.
    Priest, G.: Paraconsistent logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 6, pp. 287–393. Kluwer Academic Publishers (2002)Google Scholar
  33. 33.
    Ramachandran, D., Reagan, P., Goolsbey, K.: First-orderized ResearchCyc: expressiveness and efficiency in a common sense knowledge base. In: Shvaiko, P. (ed.) Proceedings of the AAAI Workshop on Contexts and Ontologies: Theory, Practice and Applications (C&O-2005) (2005)Google Scholar
  34. 34.
    Reynolds, A., Blanchette, J.C., Cruanes, S., Tinelli, C.: Model finding for recursive functions in SMT. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 133–151. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1_10 Google Scholar
  35. 35.
    Schulz, S.: E - A brainiac theorem prover. J. AI Commun. 15(2/3), 111–126 (2002)MATHGoogle Scholar
  36. 36.
    Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5_49 CrossRefGoogle Scholar
  37. 37.
    Seligman, E., Schubert, T., Achutha Kiran Kumar, M.: Formal Verification: An Essential Toolkit for Modern VLSI Design. Morgan Kaufmann, San Francisco (2015)CrossRefGoogle Scholar
  38. 38.
    Sutcliffe, G.: The CADE-23 automated theorem proving system competition - CASC-23. AI Commun. 25(1), 49–63 (2012)MathSciNetGoogle Scholar
  39. 39.
    Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. From CNF to TH0, TPTP v6.4.0. J. Autom. Reasoning. (2017, to appear)Google Scholar
  40. 40.
    Sutcliffe, G., Puzis, Y.: SRASS - a semantic relevance axiom selection system. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73595-3_20 CrossRefGoogle Scholar
  41. 41.
    Sutcliffe, G., Urban, J., Schulz, S. (eds.): Proceedings of the CADE-21 Workshop on Empirically Successful Automated Reasoning in Large Theories, CEUR Workshop Proceedings, vol. 257 (2007)Google Scholar
  42. 42.
    Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom. Reasoning 37(1), 21–43 (2006)MATHGoogle Scholar
  43. 43.
    Urban, J.: BliStr: The blind strategymaker. In: Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.) Proceedings of the Global Conference on Artificial Intelligence, Tibilisi, Georgia. EPiC, vol. 36, pp. 312–319. EasyChair (2015)Google Scholar
  44. 44.
    Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar formalizations. J. Autom. Reasoning 50(2), 229–241 (2013)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - machine learner for automated reasoning with semantic guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71070-7_37 CrossRefGoogle Scholar
  46. 46.
    Zalta, E., Fitelson, B.: Steps toward a computational metaphysics. Australas. J. Philos. 36(2), 227–247 (2007)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.DHBW StuttgartStuttgartGermany
  2. 2.University of MiamiCoral GablesUSA
  3. 3.Czech Technical University in PraguePragueCzech Republic
  4. 4.Articulate SoftwareSan FranciscoUSA

Personalised recommendations