Splitting Proofs for Interpolation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10395)

Abstract

We study interpolant extraction from local first-order refutations. We present a new theoretical perspective on interpolation based on clearly separating the condition on logical strength of the formula from the requirement on the common signature. This allows us to highlight the space of all interpolants that can be extracted from a refutation as a space of simple choices on how to split the refutation into two parts. We use this new insight to develop an algorithm for extracting interpolants which are linear in the size of the input refutation and can be further optimized using metrics such as number of non-logical symbols or quantifiers. We implemented the new algorithm in first-order theorem prover Vampire and evaluated it on a large number of examples coming from the first-order proving community. Our experiments give practical evidence that our work improves the state-of-the-art in first-order interpolation.

References

  1. 1.
    Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy abstraction with interpolants for arrays. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 46–61. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28717-6_7 CrossRefGoogle Scholar
  2. 2.
    Bonacina, M.P., Johansson, M.: On interpolation in automated theorem proving. J. Autom. Reasoning 54(1), 69–97 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Christ, J., Hoenicke, J.: Instantiation-based interpolation for quantified formulae. In: Decision Procedures in Software, Hardware and Bioware, April 18–23 April 2010, vol. 10161. Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2010)Google Scholar
  4. 4.
    Christ, J., Hoenicke, J.: Proof tree preserving tree interpolation. J. Autom. Reasoning 57(1), 67–95 (2016)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in satisfiability modulo theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 397–412. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3_30 CrossRefGoogle Scholar
  6. 6.
    Craig, W.: Linear reasoning. a new form of the herbrand-gentzen theorem. J. Symb. Log. 22(3), 250–268 (1957)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3_24 CrossRefGoogle Scholar
  8. 8.
    Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 737–744. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9_49 Google Scholar
  9. 9.
    Hoder, K., Kovács, L., Voronkov, A.: Playing in the grey area of proofs. In: Principles of Programming Languages, pp. 259–272. ACM (2012)Google Scholar
  10. 10.
    Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refinement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 459–473. Springer, Heidelberg (2006). doi:10.1007/11691372_33 CrossRefGoogle Scholar
  11. 11.
    Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 199–213. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02959-2_17 CrossRefGoogle Scholar
  12. 12.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8_1 CrossRefGoogle Scholar
  13. 13.
    Kovács, L., Voronkov, A.: First-order interpolation and interpolating proof systems. In: LPAR-21. 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, vol. 46. EPiC Series in Computing, pp. 49–64. EasyChair (2017)Google Scholar
  14. 14.
    Lahiri, S.K., Mehra, K.K.: Interpolant based decision procedure for quantifier-free Presburger arithmetic. Technical Report MSR-TR-2005-121, Microsoft Research (2005)Google Scholar
  15. 15.
    McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45069-6_1 CrossRefGoogle Scholar
  16. 16.
    McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006). doi:10.1007/11817963_14 CrossRefGoogle Scholar
  17. 17.
    McMillan, K.L.: Quantified invariant generation using an interpolating saturation prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3_31 CrossRefGoogle Scholar
  18. 18.
    Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Handbook of Automated Reasoning, vol. 2s, pp. 335–367. Elsevier and MIT Press (2001)Google Scholar
  19. 19.
    Podelski, A., Schäf, M., Wies, T.: Classifying bugs with interpolants. In: Aichernig, B.K.K., Furia, C.A.A. (eds.) TAP 2016. LNCS, vol. 9762, pp. 151–168. Springer, Cham (2016). doi:10.1007/978-3-319-41135-4_9 Google Scholar
  20. 20.
    Reger, G., Suda, M., Voronkov, A.: New techniques in clausal form generation. In: GCAI 2016, 2nd Global Conference on Artificial Intelligence, vol. 41. EPiC Series in Computing, pp. 11–23. EasyChair (2016)Google Scholar
  21. 21.
    Stump, A., Sutcliffe, G., Tinelli, C.: StarExec, a cross community logic solving service (2012). https://www.starexec.org
  22. 22.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reasoning 43(4), 337–362 (2009)CrossRefMATHGoogle Scholar
  23. 23.
    Totla, N., Wies, T.: Complete instantiation-based interpolation. In: Principles of Programming Languages, pp. 537–548. ACM (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.TU WienViennaAustria
  2. 2.Chalmers University of TechnologyGothenburgSweden

Personalised recommendations