A Unifying Principle for Clause Elimination in First-Order Logic

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10395)

Abstract

Preprocessing techniques for formulas in conjunctive normal form play an important role in first-order theorem proving. To speed up the proving process, these techniques simplify a formula without affecting its satisfiability or unsatisfiability. In this paper, we introduce the principle of implication modulo resolution, which allows us to lift several preprocessing techniques—in particular, several clause-elimination techniques—from the SAT-solving world to first-order logic. We analyze confluence properties of these new techniques and show how implication modulo resolution yields short soundness proofs for the existing first-order techniques of predicate elimination and blocked-clause elimination.

References

  1. 1.
    Hoder, K., Khasidashvili, Z., Korovin, K., Voronkov, A.: Preprocessing techniques for first-order clausification. In: Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012). IEEE, pp. 44–51 (2012)Google Scholar
  2. 2.
    Khasidashvili, Z., Korovin, K.: Predicate elimination for preprocessing in first-order theorem proving. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 361–372. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2_22 Google Scholar
  3. 3.
    Heule, M.J.H., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015)MathSciNetMATHGoogle Scholar
  4. 4.
    Heule, M.J.H., Seidl, M., Biere, A.: Solution validation and extraction for QBF preprocessing. J. Autom. Reasoning 58, 1–29 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Heule, M.J.H., Järvisalo, M., Biere, A.: Covered clause elimination. In: Short Papers for the 17th International Conference on Logic for Programming, Artificial intelligence, and Reasoning (LPAR-17-short), vol. 13. EPiC Series, EasyChair, pp. 41–46 (2010)Google Scholar
  6. 6.
    Heule, M.J.H., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF formulas. In: Proceedings of the 17th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR-17), LNCS, vol. 6397, pp. 357–371. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3_28 CrossRefGoogle Scholar
  8. 8.
    Kiesl, B., Suda, M., Seidl, M., Tompits, H., Biere, A.: Blocked clauses in first-order logic. In: Proceedings of the 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR-21), vol. 46. EPiC Series in Computing, EasyChair, pp. 31–48 (2017)Google Scholar
  9. 9.
    Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12002-2_10 CrossRefGoogle Scholar
  10. 10.
    Biere, A.: Splatz, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT competition 2016. In: Proceedings of SAT Competition 2016 - Solver and Benchmark Descriptions, vol. B-2016-1 of Department of Computer Science Series of Publications B, University of Helsinki, pp. 44–45 (2016)Google Scholar
  11. 11.
    Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014). doi:10.1007/978-3-319-09284-3_31 Google Scholar
  12. 12.
    Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn. Springer, New York (1996)CrossRefMATHGoogle Scholar
  13. 13.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes). Elsevier and MIT Press, pp. 19–99 (2001)Google Scholar
  14. 14.
    Kullmann, O.: On a generalization of extended resolution. Discrete Appl. Math. 96–97, 149–176 (1999)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 101–115. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6_10 CrossRefGoogle Scholar
  16. 16.
    Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based QBF solving by dynamic blocked clause elimination. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 418–433. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7_29 CrossRefGoogle Scholar
  17. 17.
    Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005). doi:10.1007/11499107_5 CrossRefGoogle Scholar
  18. 18.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations