Decision Procedures for Theories of Sets with Measures

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10395)

Abstract

In this paper we introduce a decision procedure for checking satisfiability of quantifier-free formulae in the combined theory of sets, measures and arithmetic. Such theories are important in mathematics (e.g. probability theory and measure theory) and in applications. We indicate how these ideas can be used for obtaining a decision procedure for a fragment of the duration calculus.

References

  1. 1.
    Alberti, F., Ghilardi, S., Pagani, E.: Counting constraints in flat array fragments. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS, vol. 9706, pp. 65–81. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1_6 Google Scholar
  2. 2.
    Bansal, K., Reynolds, A., Barrett, C., Tinelli, C.: A new decision procedure for finite sets and cardinality constraints in SMT. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS, vol. 9706, pp. 82–98. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1_7 Google Scholar
  3. 3.
    Bender, M.: Reasoning with sets and sums of sets. In: King, T., Piskac, R. (eds.) SMT@IJCAR 2016, Proceedings. CEUR Workshop Proceedings, vol. 1617, pp. 61–70. CEUR-WS.org (2016)Google Scholar
  4. 4.
    Bouajjani, A., Lakhnech, Y., Robbana, R.: From duration calculus to linear hybrid automata. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 196–210. Springer, Heidelberg (1995). doi:10.1007/3-540-60045-0_51 CrossRefGoogle Scholar
  5. 5.
    Chaochen, Z., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Systems. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  6. 6.
    Chaochen, Z., Hansen, M.R., Sestoft, P.: Decidability and undecidability results for duration calculus. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds.) STACS 1993. LNCS, vol. 665, pp. 58–68. Springer, Heidelberg (1993). doi:10.1007/3-540-56503-5_8 CrossRefGoogle Scholar
  7. 7.
    Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process. Lett. 40(5), 269–276 (1991)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chaochen, Z., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid real-time systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 36–59. Springer, Heidelberg (1993). doi:10.1007/3-540-57318-6_23 CrossRefGoogle Scholar
  9. 9.
    Chetcuti-Sperandio, N.: Tableau-based automated deduction for duration calculus. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS, vol. 2381, pp. 53–69. Springer, Heidelberg (2002). doi:10.1007/3-540-45616-3_5 CrossRefGoogle Scholar
  10. 10.
    Chetcuti-Sperandio, N., del Cerro, L.F.: A decision method for duration calculus. J. UCS 5(11), 743–764 (1999)MathSciNetMATHGoogle Scholar
  11. 11.
    Chetcuti-Sperandio, N., del Cerro, L.F.: A mixed decision method for duration calculus. J. Log. Comput. 10(6), 877–895 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chocron, P., Fontaine, P., Ringeissen, C.: A gentle non-disjoint combination of satisfiability procedures. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 122–136. Springer, Cham (2014). doi:10.1007/978-3-319-08587-6_9 Google Scholar
  13. 13.
    Fränzle, M., Hansen, M.R.: Deciding an interval logic with accumulated durations. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 201–215. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71209-1_17 CrossRefGoogle Scholar
  14. 14.
    Ihlemann, C., Sofronie-Stokkermans, V.: On hierarchical reasoning in combinations of theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 30–45. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14203-1_4 CrossRefGoogle Scholar
  15. 15.
    Jacobs, S.: Incremental instance generation in local reasoning. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 368–382. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4_29 CrossRefGoogle Scholar
  16. 16.
    Kapur, D., Zarba, C.G.: A reduction approach to decision procedures (2005). https://www.cs.unm.edu/~kapur/mypapers/reduction.pdf,. Unpublished manuscript
  17. 17.
    Khachiyan, L.: A polynomial algorithm in linear programming. Soviet Math. Dokl. 20(1), 191–194 (1979)MathSciNetMATHGoogle Scholar
  18. 18.
    Kuncak, V., Nguyen, H.H., Rinard, M.: An algorithm for deciding BAPA: Boolean algebra with Presburger arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 260–277. Springer, Heidelberg (2005). doi:10.1007/11532231_20 CrossRefGoogle Scholar
  19. 19.
    Kuncak, V., Nguyen, H.H., Rinard, M.C.: Deciding Boolean algebra with Presburger arithmetic. J. Autom. Reasoning 36(3), 213–239 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kuncak, V., Piskac, R., Suter, P.: Ordered sets in the calculus of data structures. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 34–48. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15205-4_5 CrossRefGoogle Scholar
  21. 21.
    Ohlbach, H.J.: Set description languages and reasoning about numerical features of sets. In: Lambrix, P., Borgida, A., Lenzerini, M., Möller, R., Patel-Schneider, P.F. (eds.) International Workshop on Description Logics (DL 1999), Proceedings. CEUR Workshop Proceedings, vol. 22. CEUR-WS.org (1999)Google Scholar
  22. 22.
    Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 219–234. Springer, Heidelberg (2005). doi:10.1007/11532231_16 CrossRefGoogle Scholar
  23. 23.
    Sofronie-Stokkermans, V., Ihlemann, C.: Automated reasoning in some local extensions of ordered structures. Multiple-Valued Logic Soft Comput. 13(4–6), 397–414 (2007)MathSciNetMATHGoogle Scholar
  24. 24.
    Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 366–382. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04222-5_23 CrossRefGoogle Scholar
  25. 25.
    Yessenov, K., Piskac, R., Kuncak, V.: Collections, cardinalities, and relations. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 380–395. Springer, Heidelberg (2010). doi:10.1007/978-3-642-11319-2_27 CrossRefGoogle Scholar
  26. 26.
    Zarba, C.G.: Combining sets with cardinals. J. Autom. Reasoning 34(1), 1–29 (2005)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. In: Gupta, R., Amarasinghe, S.P. (eds.), Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA, 7–13 June 2008, pp. 349–361. ACM (2008)Google Scholar
  28. 28.
    Chaochen, Z., Jingzhong, Z., Lu, Y., Xiaoshan, L.: Linear duration invariants. In: Langmaack, H., Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS, vol. 863, pp. 86–109. Springer, Heidelberg (1994). doi:10.1007/3-540-58468-4_161 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Universität Koblenz-LandauKoblenzGermany

Personalised recommendations