Skip to main content

Zinc, Insulin and IGF-I Interplay in Aging

  • Chapter
  • First Online:
Hormones in Ageing and Longevity

Abstract

Zn plays an important part in many biological processes including the insulin- and insulin growth factor (IGF) signaling (IIS) pathway which, in turn, is an evolutionary conserved pathway involved in many functions that are necessary for metabolism and growth. Notably, the IIS pathway play also a major role in aging. The overall cellular response and the outcome on the longevity of the organism depends also by the mechanisms involved in the regulation of Zn homeostasis that need to act in synergy just like a symphony orchestra. A likely conductor of this orchestra is the IIS pathway, which in turn is affected itself by the different ability to modulate Zn homeostasis of each cell within the tissues. The multiple ways by which Zn action affects insulin and IGF-1 activities and how these hormones modulate Zn homeostasis is reviewed in this chapter. While the mutual interaction between Zn and IIS on the modulation of longevity appears to be still unclear and characterized by contradictory findings, there is consistent support to draw a picture where a functional cell is able to disentangle IIS-mediated “nutritional Zn signals”, which activate growth promoting pathways, functional integrity and cell division, from “stress response Zn signals” which, in turn, activate a cascade of signals to regulate transcriptionally and post-transcriptionally a multitude of cellular functions that include oxidative stress responses and the secretion of soluble factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aihara K, Nishi Y, Hatano S et al (1985) Zinc, copper, manganese, and selenium metabolism in patients with human growth hormone deficiency or acromegaly. J Pediatr Gastroenterol Nutr 4:610–615

    Article  CAS  PubMed  Google Scholar 

  • Al-Maroof RA, Al-Sharbatti SS (2006) Serum zinc levels in diabetic patients and effect of zinc supplementation on glycemic control of type 2 diabetics. Saudi Med J 27:344–350

    PubMed  Google Scholar 

  • Alves CX, Vale SHL, Dantas MMG et al (2012) Positive effects of zinc supplementation on growth, GH, IGF1, and IGFBP3 in eutrophic children. J Pediatr Endocrinol Metab 25:881–887. doi:10.1515/jpem-2012-0120

    CAS  PubMed  Google Scholar 

  • Andreini C, Banci L, Bertini I, Rosato A (2006a) Zinc through the three domains of life. J Proteome Res 5:3173–3178. doi:10.1021/pr0603699

    Article  CAS  PubMed  Google Scholar 

  • Andreini C, Banci L, Bertini I, Rosato A (2006b) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5:196–201. doi:10.1021/pr050361j

    Article  CAS  PubMed  Google Scholar 

  • Andrews GK (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 59:95–104

    Article  CAS  PubMed  Google Scholar 

  • Asch HL, Dresden MH (1977) Schistosoma mansoni: effects of zinc on cercarial and schistosomule viability. J Parasitol 63:80–86

    Article  CAS  PubMed  Google Scholar 

  • Aydemir TB, Chang S-M, Guthrie GJ et al (2012) Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia). PLoS ONE 7:e48679. doi:10.1371/journal.pone.0048679

    Article  CAS  PubMed  Google Scholar 

  • Bahadorani S, Mukai S, Egli D, Hilliker AJ (2010) Overexpression of metal-responsive transcription factor (MTF-1) in Drosophila melanogaster ameliorates life-span reductions associated with oxidative stress and metal toxicity. Neurobiol Aging 31:1215–1226. doi:10.1016/j.neurobiolaging.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  • Balaram SK, Agrawal DK, Edwards JD (1999) Insulin like growth factor-1 activates nuclear factor-kappaB and increases transcription of the intercellular adhesion molecule-1 gene in endothelial cells. Cardiovasc Surg 7:91–97

    Article  CAS  PubMed  Google Scholar 

  • Balteskard L, Unneberg K, Halvorsen D et al (1998) Effects of insulin-like growth factor 1 on neutrophil and monocyte functions in normal and septic states. JPEN J Parenter Enteral Nutr 22:127–135

    Article  CAS  PubMed  Google Scholar 

  • Barsyte D, Lovejoy DA, Lithgow GJ (2001) Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J 15:627–634. doi:10.1096/fj.99-0966com

    Article  CAS  PubMed  Google Scholar 

  • Barzilai N, Bartke A (2009) Biological approaches to mechanistically understand the healthy life span extension achieved by calorie restriction and modulation of hormones. J Gerontol A Biol Sci Med Sci 64:187–191. doi:10.1093/gerona/gln061

    Article  PubMed  CAS  Google Scholar 

  • Basaki M, Saeb M, Nazifi S, Shamsaei HA (2012) Zinc, copper, iron, and chromium concentrations in young patients with type 2 diabetes mellitus. Biol Trace Elem Res 148:161–164. doi:10.1007/s12011-012-9360-6

    Article  CAS  PubMed  Google Scholar 

  • Baumeister R, Schaffitzel E, Hertweck M (2006) Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J Endocrinol 190:191–202. doi:10.1677/joe.1.06856

    Article  CAS  PubMed  Google Scholar 

  • Beattie JH, Wood AM, Newman AM et al (1998) Obesity and hyperleptinemia in metallothionein (-I and -II) null mice. Proc Natl Acad Sci U S A 95:358–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellomo EA, Meur G, Rutter GA (2011) Glucose regulates free cytosolic Zn2+ concentration, Slc39 (ZiP), and metallothionein gene expression in primary pancreatic islet β-cells. J Biol Chem 286:25778–25789. doi:10.1074/jbc.M111.246082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bensellam M, Van Lommel L, Overbergh L et al (2009) Cluster analysis of rat pancreatic islet gene mRNA levels after culture in low-, intermediate- and high-glucose concentrations. Diabetologia 52:463–476. doi:10.1007/s00125-008-1245-z

    Article  CAS  PubMed  Google Scholar 

  • Bezlepkin VG, Sirota NP, Gaziev AI (1996) The prolongation of survival in mice by dietary antioxidants depends on their age by the start of feeding this diet. Mech Ageing Dev 92:227–234

    Article  CAS  PubMed  Google Scholar 

  • Bilbao D, Luciani L, Johannesson B et al (2014) Insulin-like growth factor-1 stimulates regulatory T cells and suppresses autoimmune disease. EMBO Mol Med 6:1423–1435. doi:10.15252/emmm.201303376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blewett HJ, Taylor CG (2012) Dietary zinc deficiency in rodents: effects on T-cell development, maturation and phenotypes. Nutrients 4:449–466. doi:10.3390/nu4060449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blundell TL, Humbel RE (1980) Hormone families: pancreatic hormones and homologous growth factors. Nature 287:781–787

    Article  CAS  PubMed  Google Scholar 

  • Browning JD, MacDonald RS, Thornton WH, O’Dell BL (1998) Reduced food intake in zinc deficient rats is normalized by megestrol acetate but not by insulin-like growth factor-I. J Nutr 128:136–142

    CAS  PubMed  Google Scholar 

  • Burgers AMG, Biermasz NR, Schoones JW et al (2011) Meta-analysis and dose-response metaregression: circulating insulin-like growth factor I (IGF-I) and mortality. J Clin Endocrinol Metab 96:2912–2920. doi:10.1210/jc.2011-1377

    Article  CAS  PubMed  Google Scholar 

  • Burhans WC, Weinberger M (2007) DNA replication stress, genome instability and aging. Nucleic Acids Res 35:7545–7556. doi:10.1093/nar/gkm1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron AR, Anil S, Sutherland E et al (2010) Zinc-dependent effects of small molecules on the insulin-sensitive transcription factor FOXO1a and gluconeogenic genes. Metallomics 2:195–203. doi:10.1039/b914984h

    Article  CAS  PubMed  Google Scholar 

  • Chandra RK, Heresi G, Au B (1980) Serum thymic factor activity in deficiencies of calories, zinc, vitamin A and pyridoxine. Clin Exp Immunol 42:332–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M-D, Song Y-M (2009) Tissue metallothionein concentrations in mice and humans with hyperglycemia. Biol Trace Elem Res 127:251–256. doi:10.1007/s12011-008-8247-z

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Carlson EC, Pellet L et al (2001) Overexpression of metallothionein in pancreatic beta-cells reduces streptozotocin-induced DNA damage and diabetes. Diabetes 50:2040–2046

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Han J, Liu Y (2015) Dual opposing roles of metallothionein overexpression in C57BL/6J mouse pancreatic β-cells. PLoS ONE 10:e0137583. doi:10.1371/journal.pone.0137583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Q, Lu M, Monks BR, Birnbaum MJ (2016) Insulin is required to maintain albumin expression by Inhibiting Forkhead Box O1 protein. J Biol Chem 291:2371–2378. doi:10.1074/jbc.M115.677351

    Article  CAS  PubMed  Google Scholar 

  • Cheruvanky T, Castro-Magana M, Chen SY et al (1982) Effect of growth hormone on hair, serum, and urine zinc in growth hormone-deficient children. Am J Clin Nutr 35:668–670

    CAS  PubMed  Google Scholar 

  • Chesters JK, Petrie L, Vint H (1989) Specificity and timing of the Zn2+ requirement for DNA synthesis by 3T3 cells. Exp Cell Res 184:499–508

    Article  CAS  PubMed  Google Scholar 

  • Chimienti F, Devergnas S, Pattou F et al (2006) In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 119:4199–4206. doi:10.1242/jcs.03164

    Article  CAS  PubMed  Google Scholar 

  • Cipriano C, Malavolta M, Costarelli L et al (2006) Polymorphisms in MT1a gene coding region are associated with longevity in Italian Central female population. Biogerontology 7:357–365. doi:10.1007/s10522-006-9050-x

    Article  CAS  PubMed  Google Scholar 

  • Coffman FD, Dunn MF (1988) Insulin-metal ion interactions: the binding of divalent cations to insulin hexamers and tetramers and the assembly of insulin hexamers. Biochemistry 27:6179–6187

    Article  CAS  PubMed  Google Scholar 

  • Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089. doi:10.1074/jbc.R600011200

    Article  CAS  PubMed  Google Scholar 

  • Dardenne M, Savino W, Wade S et al (1984) In vivo and in vitro studies of thymulin in marginally zinc-deficient mice. Eur J Immunol 14:454–458. doi:10.1002/eji.1830140513

    Article  CAS  PubMed  Google Scholar 

  • Davidson HW, Wenzlau JM, O’Brien RM (2014) Zinc transporter 8 (ZnT8) and β cell function. Trends Endocrinol Metab 25:415–424. doi:10.1016/j.tem.2014.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis SR, Cousins RJ (2000) Metallothionein expression in animals: a physiological perspective on function. J Nutr 130:1085–1088

    CAS  PubMed  Google Scholar 

  • Davis DE, Roh HC, Deshmukh K et al (2009) The cation diffusion facilitator gene cdf-2 mediates zinc metabolism in Caenorhabditis elegans. Genetics 182(4):1015–1033.

    Google Scholar 

  • Day HG, Skidmore BE (1947) Some effects of dietary zinc deficiency in the mouse. J Nutr 33:27–38

    CAS  PubMed  Google Scholar 

  • De Marinis L, Mancini A, Giampietro A et al (2002) GH deficiency syndrome in elderly patients. J Endocrinol Invest 25:40–41

    PubMed  Google Scholar 

  • de Medeiros Rocha ÉD, de Brito NJN, Dantas MMG et al (2015) Effect of zinc supplementation on GH, IGF1, IGFBP3, OCN, and ALP in non-zinc-deficient children. J Am Coll Nutr 34:290–299. doi:10.1080/07315724.2014.929511

  • De Meyts P, Wallach B, Christoffersen CT et al (1994) The insulin-like growth factor-I receptor. Structure, ligand-binding mechanism and signal transduction. Horm Res 42:152–169

    Article  PubMed  Google Scholar 

  • Devine A, Rosen C, Mohan S et al (1998) Effects of zinc and other nutritional factors on insulin-like growth factor I and insulin-like growth factor binding proteins in postmenopausal women. Am J Clin Nutr 68:200–206

    CAS  PubMed  Google Scholar 

  • Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research, Saxena R, Voight BF et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336. doi:10.1126/science.1142358

  • Dong F, Li Q, Sreejayan N et al (2007) Metallothionein prevents high-fat diet induced cardiac contractile dysfunction: role of peroxisome proliferator activated receptor gamma coactivator 1alpha and mitochondrial biogenesis. Diabetes 56:2201–2212. doi:10.2337/db06-1596

    Article  CAS  PubMed  Google Scholar 

  • Ebadi M, Brown-Borg H, El Refaey H et al (2005) Metallothionein-mediated neuroprotection in genetically engineered mouse models of Parkinson’s disease. Brain Res Mol Brain Res 134:67–75. doi:10.1016/j.molbrainres.2004.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eide DJ (2011) The oxidative stress of zinc deficiency. Metallomics 3:1124–1129. doi:10.1039/c1mt00064k

    Article  CAS  PubMed  Google Scholar 

  • Estívariz CF, Ziegler TR (1997) Nutrition and the insulin-like growth factor system. Endocrine 7:65–71. doi:10.1007/BF02778066

    Article  PubMed  Google Scholar 

  • Figlewicz DP, Forhan SE, Hodgson AT, Grodsky GM (1984) 65Zinc and endogenous zinc content and distribution in islets in relationship to insulin content. Endocrinology 115:877–881. doi:10.1210/endo-115-3-877

    Article  CAS  PubMed  Google Scholar 

  • Flannick J, Thorleifsson G, Beer NL et al (2014) Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet 46:357–363. doi:10.1038/ng.2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floratou K, Giannopoulou E, Antonacopoulou A et al (2012) Oxidative stress due to radiation in CD34(+) hematopoietic progenitor cells: protection by IGF-1. J Radiat Res 53:672–685. doi:10.1093/jrr/rrs019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flurkey K, Papaconstantinou J, Miller RA, Harrison DE (2001) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc Natl Acad Sci U S A 98:6736–6741. doi:10.1073/pnas.111158898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forbes IJ, Zalewski PD, Giannakis C, Betts WH (1990) Zinc induces specific association of PKC with membrane cytoskeleton. Biochem Int 22:741–748

    CAS  PubMed  Google Scholar 

  • Fraker PJ, DePasquale-Jardieu P, Zwickl CM, Luecke RW (1978) Regeneration of T-cell helper function in zinc-deficient adult mice. Proc Natl Acad Sci U S A 75:5660–5664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Tian W, Pratt EB et al (2009) Down-regulation of ZnT8 expression in INS-1 rat pancreatic beta cells reduces insulin content and glucose-inducible insulin secretion. PLoS ONE 4:e5679. doi:10.1371/journal.pone.0005679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fung EB, Gildengorin G, Talwar S et al (2015) Zinc status affects glucose homeostasis and insulin secretion in patients with thalassemia. Nutrients 7:4296–4307. doi:10.3390/nu7064296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiser J, Venken KJT, De Lisle RC, Andrews GK (2012) A mouse model of acrodermatitis enteropathica: loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity. PLoS Genet 8:e1002766. doi:10.1371/journal.pgen.1002766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gems D, Partridge L (2008) Stress-response hormesis and aging: “that which does not kill us makes us stronger”. Cell Metab 7:200–203. doi:10.1016/j.cmet.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  • Giacconi R, Muti E, Malavolta M et al (2007) The +838 C/G MT2A polymorphism, metals, and the inflammatory/immune response in carotid artery stenosis in elderly people. Mol Med 13:388–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giacconi R, Costarelli L, Piacenza F et al (2016) Main biomarkers associated with age-related plasma zinc decrease and copper/zinc ratio in healthy elderly from ZincAge study. Eur J Nutr. doi:10.1007/s00394-016-1281-2

    PubMed  Google Scholar 

  • Giovannucci E (2003) Nutrition, insulin, insulin-like growth factors and cancer. Horm Metab Res 35:694–704. doi:10.1055/s-2004-814147

    Article  CAS  PubMed  Google Scholar 

  • Greer EL, Oskoui PR, Banko MR et al (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 282:30107–30119. doi:10.1074/jbc.M705325200

    Article  CAS  PubMed  Google Scholar 

  • Gyulkhandanyan AV, Lu H, Lee SC et al (2008) Investigation of transport mechanisms and regulation of intracellular Zn2+ in pancreatic alpha-cells. J Biol Chem 283:10184–10197. doi:10.1074/jbc.M707005200

    Article  CAS  PubMed  Google Scholar 

  • Haase H, Maret W (2005) Fluctuations of cellular, available zinc modulate insulin signaling via inhibition of protein tyrosine phosphatases. Elem Med Biol 19:37–42

    Article  CAS  Google Scholar 

  • Haase H, Rink L (2014) Multiple impacts of zinc on immune function. Metallomics 6:1175. doi:10.1039/c3mt00353a

    Article  CAS  PubMed  Google Scholar 

  • Hall AG, Kelleher SL, Lönnerdal B, Philipps AF (2005) A graded model of dietary zinc deficiency: effects on growth, insulin-like growth factor-I, and the glucose/insulin axis in weanling rats. J Pediatr Gastroenterol Nutr 41:72–80

    Article  CAS  PubMed  Google Scholar 

  • Hamza RT, Hamed AI, Sallam MT (2012) Effect of zinc supplementation on growth Hormone Insulin growth factor axis in short Egyptian children with zinc deficiency. Ital J Pediatr 38:21. doi:10.1186/1824-7288-38-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy AB, Serino AS, Wijesekara N, Chimienti F, Wheeler MB (2011a) Regulation of glucagon secretion by zinc: lessons from the β cell-specific Znt8 knockout mouse model. Diabetes Obes Metab 13(Suppl 1):112–117 doi:10.1111/j.1463-1326.2011.01451.x

  • Hardy AB, Wijesekara N, Genkin I et al (2011b) Effects of high-fat diet feeding on Znt8-null mice: differences between β-cell and global knockout of Znt8. Am Endocrinol Metab 302:E1084–E1096. doi:10.1152/ajpendo.00448.2011

  • Hardy AB, Prentice KJ, Froese S et al (2015) Zip4 mediated zinc influx stimulates insulin secretion in pancreatic beta cells. PLoS ONE 10:e0119136. doi:10.1371/journal.pone.0119136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Higashi Y, Pandey A, Goodwin B, Delafontaine P (2013) Insulin-like growth factor-1 regulates glutathione peroxidase expression and activity in vascular endothelial cells: Implications for atheroprotective actions of insulin-like growth factor-1. Biochim Biophys Acta 1832:391–399. doi:10.1016/j.bbadis.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  • Hill CP, Dauter Z, Dodson EJ et al (1991) X-ray structure of an unusual Ca2+ site and the roles of Zn2+ and Ca2+ in the assembly, stability, and storage of the insulin hexamer. Biochem 30:917–924

    Google Scholar 

  • Hoffman A, Pyka G, Lieberman S et al (1993) The somatopause. Growth hormone and somatomedins during lifespan. Springer, Berlin, Heidelberg, pp 265–274

    Chapter  Google Scholar 

  • Holzenberger M, Dupont J, Ducos B et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187. doi:10.1038/nature01298

    Article  CAS  PubMed  Google Scholar 

  • Hosea HJ, Rector ES, Taylor CG (2003) Zinc-deficient rats have fewer recent thymic emigrant (CD90+) T lymphocytes in spleen and blood. J Nutr 133:4239–4242

    CAS  PubMed  Google Scholar 

  • Hosea HJ, Rector ES, Taylor CG (2004) Dietary repletion can replenish reduced T cell subset numbers and lymphoid organ weight in zinc-deficient and energy-restricted rats. Br J Nutr 91:741–747. doi:10.1079/BJN20041104

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Yan M (2010) Kirschke of ZnT7 increases insulin synthesis and secretion in pancreatic beta-cells by promoting insulin gene transcription. Exp Cell Res 316:2630–2643

    Google Scholar 

  • Huang L, Kirschke CP, Lay YA et al (2012) Znt7-null mice are more susceptible to diet-induced glucose intolerance and insulin resistance. Chem 287:33883–33896

    Google Scholar 

  • Hubbard SR, Bishop WR, Kirschmeier P et al (1991) Identification and characterization of zinc binding sites in protein kinase C. Science 254:1776–1779

    Article  CAS  PubMed  Google Scholar 

  • Ibs KH, Rink L (2003) Zinc-altered immune function. J Nutr 133:5

    Google Scholar 

  • Imamoğlu S, Bereket A, Turan S et al (2005) Effect of zinc supplementation on growth hormone secretion, IGF-I, IGFBP-3, somatomedin generation, alkaline phosphatase, osteocalcin and growth in prepubertal children with idiopathic short stature. J Pediatr Endocrinol Metab 18:69–74

    Article  PubMed  Google Scholar 

  • Jayawardena R, Ranasinghe P, Galappatthy P et al (2012) Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr 4:13. doi:10.1186/1758-5996-4-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jou M-Y, Philipps AF, Lönnerdal B (2010) Maternal zinc deficiency in rats affects growth and glucose metabolism in the offspring by inducing insulin resistance postnatally. J Nutr 140:1621–1627. doi:10.3945/jn.109.119677

    Article  CAS  PubMed  Google Scholar 

  • Junnila RK, List EO, Berryman DE et al (2013) The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol 9:366–376. doi:10.1038/nrendo.2013.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadota Y, Aki Y, Toriuchi Y et al (2015) Deficiency of metallothionein-1 and -2 genes shortens the lifespan of the 129/Sv mouse strain. Exp Gerontol 66:21–24. doi:10.1016/j.exger.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  • Kagi JH, Schaffer A (1998) Biochemistry of metallothionein. Biochemistry 127:8509–8515

    Google Scholar 

  • Kaklamani VG, Linos A, Kaklamani E et al (1999) Dietary fat and carbohydrates are independently associated with circulating insulin-like growth factor 1 and insulin-like growth factor-binding protein 3 concentrations in healthy adults. J Clin Oncol 17:3291–3298. doi:10.1200/jco.1999.17.10.3291

    Article  CAS  PubMed  Google Scholar 

  • Kaltenberg J, Plum LM, Ober-Blöbaum JL et al (2010) Zinc signals promote IL-2-dependent proliferation of T cells. Eur J Immunol 40:1496–1503. doi:10.1002/eji.200939574

    Article  CAS  PubMed  Google Scholar 

  • Kambe T (2011) An overview of a wide range of functions of ZnT and Zip zinc transporters in the secretory pathway. Biosci Biotechnol Biochem 75:1036–1043

    Article  CAS  PubMed  Google Scholar 

  • Kampkötter A, Timpel C, Zurawski RF et al (2008) Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp Biochem Physiol B: Biochem Mol Biol 149:314–323. doi:10.1016/j.cbpb.2007.10.004

    Article  CAS  Google Scholar 

  • Kaysen GA, Rathore V, Shearer GC, Depner TA (1995) Mechanisms of hypoalbuminemia in hemodialysis patients. Kidney Int 48:510–516

    Article  CAS  PubMed  Google Scholar 

  • Keller SR (2004) Role of the insulin-regulated aminopeptidase IRAP in insulin action and diabetes. Biol Pharm Bull 27:761–764

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Accili D (2002) Signalling through IGF-I and insulin receptors: where is the specificity? Growth Horm IGF Res 12:84–90

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Kang ES, Yim YS (2011) A low-risk ZnT-8 allele (W325) for post-transplantation diabetes mellitus is protective against cyclosporin A-induced impairment of insulin secretion. Pharmacogenomics J 11:191–198

    Article  CAS  PubMed  Google Scholar 

  • Kondoh M, Tsukahara R, Kuronaga M et al (2002) Enhancement of MT synthesis by leptin in fasted mice. Life Sci 71:2425–2433

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Barhydt T, Awasthi A et al (2016) Zinc levels modulate lifespan through multiple longevity pathways in Caenorhabditis elegans. PLoS ONE 11:e0153513. doi:10.1371/journal.pone.0153513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laron Z (2001) Insulin-like growth factor 1 (IGF-1): a growth hormone. Mol Pathol 54:311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson SC, Wolk K, Brismar K, Wolk A (2005) Association of diet with serum insulin-like growth factor I in middle-aged and elderly men. Am J Clin Nutr 81:1163–1167

    CAS  PubMed  Google Scholar 

  • Laukens D, Waeytens A, De Bleser P et al (2009) Human metallothionein expression under normal and pathological conditions: mechanisms of gene regulation based on in silico promoter analysis. Crit Rev Eukaryot Gene Expr 19:301–317

    Article  CAS  PubMed  Google Scholar 

  • Lee K-S, Lee B-S, Semnani S et al (2010) Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res 13:561–570. doi:10.1089/rej.2010.1031

    Article  CAS  PubMed  Google Scholar 

  • Leiser SF, Miller RA (2010) Nrf2 signaling, a mechanism for cellular stress resistance in long-lived mice. Mol Cell Biol 30:871–884. doi:10.1128/MCB.01145-09

    Article  CAS  PubMed  Google Scholar 

  • Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176. doi:10.1146/annurev-nutr-033009-083312

  • Lichten LA, Ryu MS, Guo L et al (2011) MTF-1-mediated repression of the zinc transporter Zip10 is alleviated by zinc restriction. PLoS ONE 6(6):e21526

    Google Scholar 

  • Lichtlen P, Wang Y, Belser T et al (2001) Target gene search for the metal-responsive transcription factor MTF-1. Nucleic Acids Res 29:1514–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Li P, Cai L et al (2010) Association study of genetic variants in eight genes/loci with type 2 diabetes in a Han Chinese population. BMC Med Genet 11(1): 97

    Google Scholar 

  • Liu Y, Batchuluun B, Ho L et al (2015) Characterization of zinc influx transporters (ZIPs) in pancreatic β cells: roles in regulating cytosolic zinc homeostasis and insulin secretion. J Biol Chem 290:18757–18769. doi:10.1074/jbc.M115.640524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liuzzi JP, Lichten LA, Rivera S et al (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci U S A 102:6843–6848. doi:10.1073/pnas.0502257102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longo VD, Finch CE (2003) Evolutionary medicine: from dwarf model systems to healthy centenarians? Science 299:1342–1346. doi:10.1126/science.1077991

    Article  PubMed  CAS  Google Scholar 

  • Lynes MA, Hidalgo J, Manso Y et al (2014) Metallothionein and stress combine to affect multiple organ systems. Cell Stress Chaperones 19:605–611. doi:10.1007/s12192-014-0501-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Tao R, Liu Q et al (2011) PTP1B inhibitor improves both insulin resistance and lipid abnormalities in vivo and in vitro. Mol Cell Biochem 357:65–72. doi:10.1007/s11010-011-0876-4

    Article  CAS  PubMed  Google Scholar 

  • Maares M, Haase H (2016) Zinc and immunity: an essential interrelation. Arch Biochem Biophys. doi:10.1016/j.abb.2016.03.022

    PubMed  Google Scholar 

  • MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130:1500S–1508S

    CAS  PubMed  Google Scholar 

  • MacDonald RS, Wollard-Biddle LC, Browning JD et al (1998) Zinc deprivation of murine 3T3 cells by use of diethylenetrinitrilopentaacetate impairs DNA synthesis upon stimulation with insulin-like growth factor-1 (IGF-1). J Nutr 128:1600–1605

    CAS  PubMed  Google Scholar 

  • Madeo F, Zimmermann A, Maiuri MC, Kroemer G (2015) Essential role for autophagy in life span extension. J Clin Invest 125:85–93. doi:10.1172/JCI73946

    Article  PubMed  PubMed Central  Google Scholar 

  • Maggio M, De Vita F, Lauretani F et al (2013) IGF-1, the cross road of the nutritional, inflammatory and hormonal pathways to frailty. Nutrients 5:4184–4205. doi:10.3390/nu5104184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majithia AR, Jablonski KA, McAteer JB et al (2011) Association of the SLC30A8 missense polymorphism R325W with proinsulin levels at baseline and after lifestyle, metformin or troglitazone intervention in the Diabetes Prevention Program. Diabetol 54:2570–2574

    Google Scholar 

  • Malavolta M, Piacenza F, Costarelli L et al (2007) Combining UHR-SEC-HPLC-ICP-MS with flow cytometry to quantify metallothioneins and to study zinc homeostasis in human PBMC. J Anal At Spectrom 22:1193. doi:10.1039/b704577h

    Article  CAS  Google Scholar 

  • Malavolta M, Basso A, Piacenza F et al (2012) Survival study of metallothionein-1 transgenic mice and respective controls (C57BL/6J): influence of a zinc-enriched environment. Rejuvenation Res 15:140–143. doi:10.1089/rej.2011.1261

    Article  CAS  PubMed  Google Scholar 

  • Malavolta M, Orlando F, Piacenza F et al (2016) Metallothioneins, longevity and cancer: Comment on “Deficiency of metallothionein-1 and -2 genes shortens the lifespan of the 129/Sv mouse strain”. Exp Gerontol 73:28–30. doi:10.1016/j.exger.2015.11.014

    Article  CAS  PubMed  Google Scholar 

  • Maret W (2009) Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. Biometals 22(1):149–157

    Google Scholar 

  • Maret W (2015) Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules. Metallomics 7:202–211. doi:10.1039/c4mt00230j

    Article  CAS  PubMed  Google Scholar 

  • Maret W, Krezel A (2007) Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. Mol Med 13:371–375. doi:10.2119/2007-00036.Maret

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maret W, Vallee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci USA 95:3478–3482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matys V, Kel-Margoulis OV, Fricke E et al (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34:D108–D110. doi:10.1093/nar/gkj143

    Article  CAS  PubMed  Google Scholar 

  • Maxel T, Smidt K, Larsen A et al (2015) Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes. BMC Obes 2:46. doi:10.1186/s40608-015-0076-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Meugnier E, Faraj M, Rome S et al (2007) Acute hyperglycemia induces a global downregulation of gene expression in adipose tissue and skeletal muscle of healthy subjects. Diabetes 56:992–999

    Google Scholar 

  • Mocchegiani E, Santarelli L, Tibaldi A et al (1998) Presence of links between zinc and melatonin during the circadian cycle in old mice: effects on thymic endocrine activity and on the survival. J Neuroimmunol 86:111–122

    Article  CAS  PubMed  Google Scholar 

  • Mocchegiani E, Giacconi R, Costarelli L et al (2008a) Zinc deficiency and IL-6 -174G/C polymorphism in old people from different European countries: effect of zinc supplementation. ZINCAGE study. Exp Gerontol 43:433–444. doi:10.1016/j.exger.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  • Mocchegiani E, Giacconi R, Malavolta M (2008b) Zinc signalling and subcellular distribution: emerging targets in type 2 diabetes. Trends Mol Med 14:419–428. doi:10.1016/j.molmed.2008.08.002

    Article  CAS  PubMed  Google Scholar 

  • Moore JB, Blanchard RK, McCormack WT, Cousins RJ (2001) cDNA array analysis identifies thymic LCK as upregulated in moderate murine zinc deficiency before T-lymphocyte population changes. J Nutr 131:3189–3196

    CAS  PubMed  Google Scholar 

  • Murgia C, Devirgiliis C, Mancini E et al (2008) Diabetes-linked zinc transporter ZnT8 is a homodimeric protein expressed by distinct rodent endocrine cell types in the pancreas and other glands. Nutr Metab Cardiovasc Dis 19:431–439 doi:10.1016/j.numecd.2008.09.004

  • Murphy CT, McCarroll SA, Bargmann CI et al (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283. doi:10.1038/nature01789

    Article  CAS  PubMed  Google Scholar 

  • Myers SA (2015) Zinc transporters and zinc signaling: new insights into their role in type 2 diabetes. Int J Endocrinol 2015:1–7. doi:10.1155/2015/167503

    Article  CAS  Google Scholar 

  • Ni F, Sun R, Fu B et al (2013) IGF-1 promotes the development and cytotoxic activity of human NK cells. Nat Commun 4:1479. doi:10.1038/ncomms2484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicolson TJ, Bellomo EA, Wijesekara N et al (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58:2070–2083. doi:10.2337/db09-0551

  • Ninh NX, Thissen JP, Maiter D et al (1995) Reduced liver insulin-like growth factor-I gene expression in young zinc-deprived rats is associated with a decrease in liver growth hormone (GH) receptors and serum GH-binding protein. J Endocrinol 144:449–456

    Article  CAS  PubMed  Google Scholar 

  • Ninh NX, Thissen JP, Collette L et al (1996) Zinc supplementation increases growth and circulating insulin-like growth factor I (IGF-I) in growth-retarded Vietnamese children. Am J Clin Nutr 63:514–519

    CAS  PubMed  Google Scholar 

  • Ninh NX, Maiter D, Verniers J et al (1998) Failure of exogenous IGF-I to restore normal growth in rats submitted to dietary zinc deprivation. J Endocrinol 159:211–217

    Google Scholar 

  • North M, Steffen J, Loguinov AV et al (2012) Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae. PLoS Genet 8:e1002699. doi:10.1371/journal.pgen.1002699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nygaard SB, Larsen A, Knuhtsen A et al (2014) Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells. Notes 7:84. doi:10.1186/1756-0500-7-84

  • Nygaard SB, Lund NS, Larsen A et al (2015) Exogenous metallothionein potentiates the insulin response at normal glucose concentrations in INS-1E beta-cells without disturbing intracellular ZnT8 expression. Basic Clin Pharmacol Toxicol 116:173–177. doi:10.1111/bcpt.12287

    Article  CAS  PubMed  Google Scholar 

  • Ohly P, Dohle C, Abel J et al (2000) Zinc sulphate induces metallothionein in pancreatic islets of mice and protects against diabetes induced by multiple low doses of streptozotocin. Diabetologia 43:1020–1030

    Article  CAS  PubMed  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    Article  CAS  PubMed  Google Scholar 

  • Park L, Min D, Kim H et al (2011) The combination of metallothionein and superoxide dismutase protects pancreatic β cells from oxidative damage. Diabetes Metab Res Rev 27:802–808. doi:10.1002/dmrr.1254

    Article  CAS  PubMed  Google Scholar 

  • Partridge L, Alic N, Bjedov I, Piper MDW (2011) Ageing in Drosophila: the role of the insulin/Igf and TOR signalling network. Exp Gerontol 46:376–381. doi:10.1016/j.exger.2010.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peavy DE, Taylor JM, Jefferson LS (1978) Correlation of albumin production rates and albumin mRNA levels in livers of normal, diabetic, and insulin-treated diabetic rats. Proc Natl Acad Sci USA 75:5879–5883

    Google Scholar 

  • Petersen AB, Smidt K, Magnusson NE et al (2011) siRNA-mediated knock-down of ZnT3 and ZnT8 affects production and secretion of insulin and apoptosis in INS-1E cells. APMIS 119:93–102. doi:10.1111/j.1600-0463.2010.02698.x

    Article  CAS  PubMed  Google Scholar 

  • Piantanelli L, Rossolini G, Basso A et al (2001) Use of mathematical models of survivorship in the study of biomarkers of aging: the role of heterogeneity. Mech Ageing Dev 122:1461–1475. doi:10.1016/S0047-6374(01)00271-8

    Article  CAS  PubMed  Google Scholar 

  • Plum LM, Brieger A, Engelhardt G et al (2014) PTEN-inhibition by zinc ions augments interleukin-2-mediated Akt phosphorylation. Metallomics 6:1277–1287. doi:10.1039/c3mt00197k

    Article  CAS  PubMed  Google Scholar 

  • Pound LD, Sarkar SA, Benninger RKP et al (2009) Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion. Biochem J 421:371–376. doi:10.1042/BJ20090530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pound LD, Sarkar SA, Ustione A et al (2012) The physiological effects of deleting the mouse Slc30a8 gene encoding zinc transporter-8 are influenced by gender and genetic background. PLoS ONE 7:e40972. doi:10.1371/journal.pone.0040972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad AS (2012) Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol 26:66–69. doi:10.1016/j.jtemb.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 4:176–190. doi:10.3945/an.112.003210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quilliot D, Dousset B, Guerci B et al (2001) Evidence that diabetes mellitus favors impaired metabolism of zinc, copper, and selenium in chronic pancreatitis. Pancreas 22:299–306

    Article  CAS  PubMed  Google Scholar 

  • Rodondi A, Ammann P, Ghilardi-Beuret S, Rizzoli R (2009) Zinc increases the effects of essential amino acids-whey protein supplements in frail elderly. J Nutr Health Aging 13:491–497

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld RG (2005) The IGF system: new developments relevant to pediatric practice. Endocr Dev 9:1–10. doi:10.1159/000085716

    CAS  PubMed  Google Scholar 

  • Roth H-P, Kirchgeßner M (1994) Influence of alimentary zinc deficiency on the concentration of growth hormone (GH), insulin-like growth factor I (IGF-I) and insulin in the serum of force-fed rats. Horm Metab Res 26:404–408. doi:10.1055/s-2007-1001718

    Article  CAS  PubMed  Google Scholar 

  • Russell SJ, Kahn CR (2007) Endocrine regulation of ageing. Nat Rev Mol Cell Biol 8:681–691. doi:10.1038/nrm2234

    Article  CAS  PubMed  Google Scholar 

  • Saini N, Schaffner W (2010) Zinc supplement greatly improves the condition of parkin mutant Drosophila. Biol Chem 391:513–518. doi:10.1515/BC.2010.052

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Kawakami T, Kondoh M et al (2010) Development of high-fat-diet-induced obesity in female metallothionein-null mice. FASEB J 24:2375–2384. doi:10.1096/fj.09-145466

    Article  CAS  PubMed  Google Scholar 

  • Saul N, Pietsch K, Menzel R et al (2010) The longevity effect of tannic acid in Caenorhabditis elegans: disposable Soma meets hormesis. J Gerontol A Biol Sci Med Sci 65:626–635. doi:10.1093/gerona/glq051

    Article  PubMed  CAS  Google Scholar 

  • Scheede-Bergdahl C, Penkowa M, Hidalgo J et al (2005) Metallothionein-mediated antioxidant defense system and its response to exercise training are impaired in human type 2 diabetes. Diabetes 54:3089–3094

    Google Scholar 

  • Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345

    Google Scholar 

  • Sherlock M, Toogood AA (2007) Aging and the growth hormone/insulin like growth factor-I axis. Pituitary 10:189–203. doi:10.1007/s11102-007-0039-5

    Article  CAS  PubMed  Google Scholar 

  • Shi HN, Scott ME, Stevenson MM, Koski KG (1998) Energy restriction and zinc deficiency impair the functions of murine T cells and antigen-presenting cells during gastrointestinal nematode infection. J Nutr 128:20–27

    CAS  PubMed  Google Scholar 

  • Singh A, Papanicolaou DA, Lawrence LL et al (1999) Neuroendocrine responses to running in women after zinc and vitamin E supplementation. Med Sci Sports Exerc 31:536–542

    Article  CAS  PubMed  Google Scholar 

  • Slucca M, Harmon JS, Oseid EA et al (2010) ATP-sensitive K+ channel mediates the zinc switch-off signal for glucagon response during glucose deprivation. Diabetes 59:128–134

    Article  CAS  PubMed  Google Scholar 

  • Smidt K, Jessen N, Petersen AB et al (2009) SLC30A3 responds to glucose- and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress. PLoS ONE 4:e5684. doi:10.1371/journal.pone.0005684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smidt K, Larsen A, Brønden A, Sørensen KS, Nielsen JV et al (2016) The zinc transporter ZNT3 co-localizes with insulin in INS-1E pancreatic beta cells and influences cell survival, insulin secretion capacity, and ZNT8 expression. Biometals 29(2):287–298

    Google Scholar 

  • Sonntag WE, Csiszar A, deCabo R et al (2012) Diverse roles of growth hormone and insulin-like growth factor-1 in mammalian aging: progress and controversies. J Gerontol A Biol Sci Med Sci 67:587–598. doi:10.1093/gerona/gls115

    Article  PubMed  CAS  Google Scholar 

  • Steenbergen JF, Steenbergen SM, Weinberg ED (1969) Tolerance of yeasts to zinc: distinction between cell growth and cell longevity. Can J Microbiol 15:229–233

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Seeberger J, Alberico T et al (2010) Açai palm fruit (Euterpe oleracea Mart.) pulp improves survival of flies on a high fat diet. Exp Gerontol 45:243–251. doi:10.1016/j.exger.2010.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Ishihara K, Migaki H et al (2005) Zinc transporters, ZnT5 and ZnT7, are required for the activation of alkaline phosphatases, zinc-requiring enzymes that are glycosylphosphatidylinositol-anchored to the cytoplasmic membrane. J Biol Chem 280:637–643. doi:10.1074/jbc.M411247200

    Article  CAS  PubMed  Google Scholar 

  • Swindell WR (2007) Gene expression profiling of long-lived dwarf mice: longevity-associated genes and relationships with diet, gender and aging. BMC Genom 8:353. doi:10.1186/1471-2164-8-353

    Article  CAS  Google Scholar 

  • Swindell WR, Masternak MM, Bartke A (2010) In vivo analysis of gene expression in long-lived mice lacking the pregnancy-associated plasma protein A (PappA) gene. Exp Gerontol 45:366–374. doi:10.1016/j.exger.2010.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452. doi:10.1093/nar/gku1003

    Article  CAS  PubMed  Google Scholar 

  • Szrok S, Stelmanska E, Turyn J et al (2016) Metallothioneins 1 and 2, but not 3, are regulated by nutritional status in rat white adipose tissue. Genes Nutr 11(1):18. doi:10.1186/s12263-016-0533-3

  • Tamaki M, Fujitani Y, Hara A et al (2013) The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. Invest 123:4513–4524. doi:10.1172/JCI68807

  • Tang X, Shay NF (2001) Zinc has an insulin-like effect on glucose transport mediated by phosphoinositol-3-kinase and Akt in 3T3-L1 fibroblasts and adipocytes. J Nutr 131:1414–1420

    CAS  PubMed  Google Scholar 

  • Taylor CG (2005) Zinc, the pancreas and diabetes: insights from rodent studies and future directions. Biometals 18:305–312. doi:10.1007/s10534-005-3686-x

    Article  CAS  PubMed  Google Scholar 

  • Thornalley PJ, Vasák M (1985) Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 827:36–44

    Article  CAS  PubMed  Google Scholar 

  • Todd WR, Elvehjem CA, Hart EB (1934) Zinc in the nutrition of rat. Am J Physiol 107:146–156. doi:10.1111/j.1753-4887.1980.tb05879.x

    CAS  Google Scholar 

  • Tominaga K, Kagata T, Johmura Y et al (2005) SLC39A14, a LZT protein, is induced in adipogenesis and transports zinc. FEBS J 272:1590–1599. doi:10.1111/j.1742-4658.2005.04580.x

    Article  CAS  PubMed  Google Scholar 

  • Uchida E, Masumoto A, Sakamoto S, Koga S, Nawata H (1991) Effect of insulin, glucagon or dexamethasone on the production of apolipoprotein A-IV in cultured rat hepatocytes. Atheroscler 87(2–3):195–202

    Google Scholar 

  • Vedell PT, Svenson KL, Churchill GA (2011) Stochastic variation of transcript abundance in C57BL/6J mice. BMC Genom 12:167. doi:10.1186/1471-2164-12-167

    Article  Google Scholar 

  • Walker GM (1998) Yeast physiology and biotechnology. Wiley

    Google Scholar 

  • Walter PL, Kampkötter A, Eckers A et al (2006) Modulation of FoxO signaling in human hepatoma cells by exposure to copper or zinc ions. Arch Biochem Biophys 454:107–113. doi:10.1016/j.abb.2006.08.016

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yang F, Zhang X et al (2010) Comparative analysis of MTF-1 binding sites between human and mouse. Mamm Genome 21:287–298. doi:10.1007/s00335-010-9257-7

    Article  CAS  PubMed  Google Scholar 

  • Wijesekara N, Dai FF, Hardy AB et al (2010) Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetol 53:1656–1668. doi:10.1007/s00125-010-1733-9

  • Yang X, Doser TA, Fang CX et al (2006) Metallothionein prolongs survival and antagonizes senescence-associated cardiomyocyte diastolic dysfunction: role of oxidative stress. FASEB J 20:1024–1026. doi:10.1096/fj.05-5288fje

    Article  CAS  PubMed  Google Scholar 

  • Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341. doi:10.1126/science.1142364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Supplementary Data

  • Full link to the STRING NETWORKS described in Fig. 4.2. Copy and paste the URL to see interactive and high resolution picture.

    Google Scholar 

Human:

Mus Musculus:

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Malavolta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Malavolta, M. et al. (2017). Zinc, Insulin and IGF-I Interplay in Aging. In: Rattan, S., Sharma, R. (eds) Hormones in Ageing and Longevity. Healthy Ageing and Longevity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-63001-4_4

Download citation

Publish with us

Policies and ethics