Skip to main content

How Teachers Can Promote Mathematising by Means of Mathematical City Walks

Part of the International Perspectives on the Teaching and Learning of Mathematical Modelling book series (IPTL)


By using mathematical city walks, teachers can promote competences in mathematising. In this out-of-school activity, the independent setting up of mathematical models is practised based on meaningful reality-based tasks. It is crucial that the tasks are appropriately selected for the cognitive skills of the students and include basic ideas specific to mathematical topics. The chapter analyses an example of a task according to basic ideas contained, potential difficulties and possible solutions. Based on the reconstructed basic ideas, teachers can also use the tasks of a mathematical city walk diagnostically. For this purpose, students can be interviewed in a diagnostic interview about their solution approaches.


  • Mathematising
  • Tasks
  • Basic ideas
  • Math trails
  • Percentage
  • Diagnostic dimension

This is a preview of subscription content, access via your institution.

Fig. 4.1
Fig. 4.2
Fig. 4.3


  • Blane, D. C., & Clarke, D. (1984). A mathematics trail around the city of Melbourne. Melbourne: Monash Mathematics Education Center, Monash University.

    Google Scholar 

  • Blum, W. (2007). Mathematisches Modellieren – Zu schwer für Schüler und Lehrer? In GDM (Ed.), Beiträge zum Mathematikunterricht 2007 (pp. 3–12). Franzbecker: Hildesheim.

    Google Scholar 

  • Blum, W. (2015). Quality teaching of mathematical modelling: What do we know? What can we do? In S. J. Cho (Ed.), Proceedings of the 12th international congress on mathematical education (pp. 73–96). Heidelberg: Springer.

    Google Scholar 

  • Borromeo Ferri, R., & Blum, W. (2010). Mathematical modelling in teacher education–experiences from a modelling seminar. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the sixth congress of the European Society for Research in Mathematics Education (pp. 2046–2055). Lyon: INRP.

    Google Scholar 

  • Brunner, M., Anders, Y., Hachfeld, A., & Krauss, S. (2013). The diagnostic skills of mathematics teachers. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers (pp. 229–248). New York: Springer.

    CrossRef  Google Scholar 

  • Doerr, H. (2007). What knowledge do teachers need for teaching mathematics through applications and modelling? In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 69–78). New York: Springer.

    CrossRef  Google Scholar 

  • Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: Kluwer.

    Google Scholar 

  • Galbraith, P., Stillman, G., Brown, J., & Edwards, I. (2007). Facilitating middle secondary modelling competencies. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12). Education, engineering and economics (pp. 130–140). Chichester: Horwood.

    CrossRef  Google Scholar 

  • Hafner, T. (2011). Proportionalität und Prozentrechnung in der Sekundarstufe I. Empirische Untersuchung und didaktische Analysen. Wiesbaden: Vieweg + Teubner.

    Google Scholar 

  • Hafner, T., & vom Hofe, R. (2008). Aufgaben analysieren und Schülervorstellungen erkennen. Diagnostische Interviews zur Prozentrechnung. Mathematik Lehren, 150, 14–19.

    Google Scholar 

  • Kaiser, G., Schwarz, B., & Tiedemann, S. (2010). Future teachers’ professional knowledge on modelling. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies: ICTMA 13 (pp. 433–444). New York: Springer.

    CrossRef  Google Scholar 

  • Kleine, M., Jordan, A., & Harvey, E. (2005). With a focus on ‘Grundvorstellungen’ as a theoretical and empirical criterion. ZDM – International Reviews on Mathematical Education, 37(3), 234–239.

    CrossRef  Google Scholar 

  • Ludwig, M., & Jesberg, J. (2015). Using mobile technology to provide outdoor modelling tasks – the MathCityMap-Project. Procedia – Social and Behavioral Sciences, 191, 2776–2781.

    CrossRef  Google Scholar 

  • Ministry of Education. (2008). Numeracy professional development projects 2008. Book 2: The diagnostic interview. Wellington: Ministry of Education.

    Google Scholar 

  • Shoaf, M., Pollak, H., & Schneider, J. (2004). Math trails. Lexington: COMAP.

    Google Scholar 

  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151–169.

    CrossRef  Google Scholar 

  • Turner, R., Blum, W., & Niss, M. (2015). Using competencies to explain mathematical item demand: A work in progress. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy. The PISA experience (pp. 85–115). Springer International: Cham.

    Google Scholar 

  • Vom Hofe, R. (1998). On the generation of basic ideas and individual images: Normative, descriptive and constructive aspects. In A. Sierpinska & J. Kilpatrick (Eds.), Mathematics education as a research domain: A search for identity. An ICMI study (pp. 317–331). Dordrecht: Kluwer.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nils Buchholtz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Buchholtz, N. (2017). How Teachers Can Promote Mathematising by Means of Mathematical City Walks. In: Stillman, G., Blum, W., Kaiser, G. (eds) Mathematical Modelling and Applications. International Perspectives on the Teaching and Learning of Mathematical Modelling. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62967-4

  • Online ISBN: 978-3-319-62968-1

  • eBook Packages: EducationEducation (R0)