How Teachers Can Promote Mathematising by Means of Mathematical City Walks

Part of the International Perspectives on the Teaching and Learning of Mathematical Modelling book series (IPTL)


By using mathematical city walks, teachers can promote competences in mathematising. In this out-of-school activity, the independent setting up of mathematical models is practised based on meaningful reality-based tasks. It is crucial that the tasks are appropriately selected for the cognitive skills of the students and include basic ideas specific to mathematical topics. The chapter analyses an example of a task according to basic ideas contained, potential difficulties and possible solutions. Based on the reconstructed basic ideas, teachers can also use the tasks of a mathematical city walk diagnostically. For this purpose, students can be interviewed in a diagnostic interview about their solution approaches.


Mathematising Tasks Basic ideas Math trails Percentage Diagnostic dimension 


  1. Blane, D. C., & Clarke, D. (1984). A mathematics trail around the city of Melbourne. Melbourne: Monash Mathematics Education Center, Monash University.Google Scholar
  2. Blum, W. (2007). Mathematisches Modellieren – Zu schwer für Schüler und Lehrer? In GDM (Ed.), Beiträge zum Mathematikunterricht 2007 (pp. 3–12). Franzbecker: Hildesheim.Google Scholar
  3. Blum, W. (2015). Quality teaching of mathematical modelling: What do we know? What can we do? In S. J. Cho (Ed.), Proceedings of the 12th international congress on mathematical education (pp. 73–96). Heidelberg: Springer.Google Scholar
  4. Borromeo Ferri, R., & Blum, W. (2010). Mathematical modelling in teacher education–experiences from a modelling seminar. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the sixth congress of the European Society for Research in Mathematics Education (pp. 2046–2055). Lyon: INRP.Google Scholar
  5. Brunner, M., Anders, Y., Hachfeld, A., & Krauss, S. (2013). The diagnostic skills of mathematics teachers. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers (pp. 229–248). New York: Springer.CrossRefGoogle Scholar
  6. Doerr, H. (2007). What knowledge do teachers need for teaching mathematics through applications and modelling? In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 69–78). New York: Springer.CrossRefGoogle Scholar
  7. Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht: Kluwer.Google Scholar
  8. Galbraith, P., Stillman, G., Brown, J., & Edwards, I. (2007). Facilitating middle secondary modelling competencies. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12). Education, engineering and economics (pp. 130–140). Chichester: Horwood.CrossRefGoogle Scholar
  9. Hafner, T. (2011). Proportionalität und Prozentrechnung in der Sekundarstufe I. Empirische Untersuchung und didaktische Analysen. Wiesbaden: Vieweg + Teubner.Google Scholar
  10. Hafner, T., & vom Hofe, R. (2008). Aufgaben analysieren und Schülervorstellungen erkennen. Diagnostische Interviews zur Prozentrechnung. Mathematik Lehren, 150, 14–19.Google Scholar
  11. Kaiser, G., Schwarz, B., & Tiedemann, S. (2010). Future teachers’ professional knowledge on modelling. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies: ICTMA 13 (pp. 433–444). New York: Springer.CrossRefGoogle Scholar
  12. Kleine, M., Jordan, A., & Harvey, E. (2005). With a focus on ‘Grundvorstellungen’ as a theoretical and empirical criterion. ZDM – International Reviews on Mathematical Education, 37(3), 234–239.CrossRefGoogle Scholar
  13. Ludwig, M., & Jesberg, J. (2015). Using mobile technology to provide outdoor modelling tasks – the MathCityMap-Project. Procedia – Social and Behavioral Sciences, 191, 2776–2781.CrossRefGoogle Scholar
  14. Ministry of Education. (2008). Numeracy professional development projects 2008. Book 2: The diagnostic interview. Wellington: Ministry of Education.Google Scholar
  15. Shoaf, M., Pollak, H., & Schneider, J. (2004). Math trails. Lexington: COMAP.Google Scholar
  16. Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151–169.CrossRefGoogle Scholar
  17. Turner, R., Blum, W., & Niss, M. (2015). Using competencies to explain mathematical item demand: A work in progress. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy. The PISA experience (pp. 85–115). Springer International: Cham.Google Scholar
  18. Vom Hofe, R. (1998). On the generation of basic ideas and individual images: Normative, descriptive and constructive aspects. In A. Sierpinska & J. Kilpatrick (Eds.), Mathematics education as a research domain: A search for identity. An ICMI study (pp. 317–331). Dordrecht: Kluwer.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of EducationUniversity of Olso, Moltke Moes vei 35OsloNorway

Personalised recommendations