Skip to main content

Regenerating Melanocytes: Current Stem Cell Approaches with Focus on Muse Cells

  • Chapter
  • First Online:
Vitiligo
  • 977 Accesses

Abstract

Muse cells are recently found endogenous non-tumorigenic pluripotent stem cells that reside in connective tissue of various organs including the dermis and in the bone marrow. They are collectable as cells positive for stage-specific embryonic antigen (SSEA)-3, a pluripotent surface marker, from tissues, and are expandable in vitro. Other than SSEA-3, they express Oct3/4, Nanog and Sox, other pluripotent genes. Notably, they are able to differentiate into cells representative of all three germ layers from single cells and are self-renewable, suggesting their pluripotency. Muse cells collected from human dermal fibroblasts (dermal-Muse cells) were shown to efficiently differentiate into melanin-producing functional melanocytes by treating them with ten factors. Functions of melanocytes induced from Muse cells (Muse melanocytes) were comparable to that of primary human melanocytes. Melanin-producing ability of human Muse melanocytes was retained when they were incorporated into human-colored three-dimensional (3D) cultured skin and even after transplantation of the 3D-cultured skin into the back of immunodeficient mice. Since Muse cells are non-tumorigenic and harvestable from easy accessible sources such as skin biopsy and dermal fibroblasts, Muse melanocytes are beneficial for both industrial and clinical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fioramonti P, Onesti MG, Marchese C, Carella S, Ceccarelli S, Scuderi N. Autologous cultured melanocytes in vitiligo treatment comparison of two techniques to prepare the recipient site: erbium-doped yttrium aluminum garnet laser versus dermabrasion. Dermatol Surg. 2012;38(5):809–12. https://doi.org/10.1111/j.1524-4725.2012.02354.x.

    Article  CAS  PubMed  Google Scholar 

  2. van Geel N, Ongenae K, Naeyaert JM. Surgical techniques for vitiligo: a review. Dermatology. 2001;202(2):162–6. https://doi.org/10.1159/000051626.

    Article  PubMed  Google Scholar 

  3. Fang D, Leishear K, Nguyen TK, Finko R, Cai K, Fukunaga M, et al. Defining the conditions for the generation of melanocytes from human embryonic stem cells. Stem Cells. 2006;24(7):1668–77. https://doi.org/10.1634/stemcells.2005-0414.

    Article  PubMed  Google Scholar 

  4. Motohashi T, Aoki H, Yoshimura N, Kunisada T. Induction of melanocytes from embryonic stem cells and their therapeutic potential. Pigment Cell Res. 2006;19(4):284–9. https://doi.org/10.1111/j.1600-0749.2006.00317.x.

    Article  PubMed  Google Scholar 

  5. Nissan X, Larribere L, Saidani M, Hurbain I, Delevoye C, Feteira J, et al. Functional melanocytes derived from human pluripotent stem cells engraft into pluristratified epidermis. Proc Natl Acad Sci U S A. 2011;108(36):14861–6. https://doi.org/10.1073/pnas.1019070108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ohta S, Imaizumi Y, Okada Y, Akamatsu W, Kuwahara R, Ohyama M, et al. Generation of human melanocytes from induced pluripotent stem cells. PLoS One. 2011;6(1):e16182. https://doi.org/10.1371/journal.pone.0016182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamane T, Hayashi S, Mizoguchi M, Yamazaki H, Kunisada T. Derivation of melanocytes from embryonic stem cells in culture. Dev Dyn. 1999;216(4–5):450–8. https://doi.org/10.1002/(SICI)1097-0177(199912)216:4/5<450::AID-DVDY13>3.0.CO;2-0.

    Article  CAS  PubMed  Google Scholar 

  8. Yang R, Jiang M, Kumar SM, Xu T, Wang F, Xiang L, et al. Generation of melanocytes from induced pluripotent stem cells. J Invest Dermatol. 2011;131(12):2458–66. https://doi.org/10.1038/jid.2011.242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Knoppers BM, Bordet S, Isasi R. The human embryo: ethical and legal aspects. Methods Mol Biol. 2009;550:281–305. https://doi.org/10.1007/978-1-60327-009-0_18.

    Article  PubMed  Google Scholar 

  10. Manzar N, Manzar B, Hussain N, Hussain MF, Raza S. The ethical dilemma of embryonic stem cell research. Sci Eng Ethics. 2013;19(1):97–106. https://doi.org/10.1007/s11948-011-9326-7.

    Article  PubMed  Google Scholar 

  11. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11(4):268–77. https://doi.org/10.1038/nrc3034.

    Article  CAS  PubMed  Google Scholar 

  12. Fong CY, Gauthaman K, Bongso A. Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem. 2010;111(4):769–81. https://doi.org/10.1002/jcb.22775.

    Article  CAS  PubMed  Google Scholar 

  13. Goldring CE, Duffy PA, Benvenisty N, Andrews PW, Ben-David U, Eakins R, et al. Assessing the safety of stem cell therapeutics. Cell Stem Cell. 2011;8(6):618–28. https://doi.org/10.1016/j.stem.2011.05.012.

    Article  CAS  PubMed  Google Scholar 

  14. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448(7151):313–7. https://doi.org/10.1038/nature05934.

    Article  CAS  PubMed  Google Scholar 

  15. Paino F, Ricci G, De Rosa A, D’Aquino R, Laino L, Pirozzi G, et al. Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. Eur Cell Mater. 2010;20:295–305.

    Article  CAS  PubMed  Google Scholar 

  16. Stevens A, Zuliani T, Olejnik C, LeRoy H, Obriot H, Kerr-Conte J, et al. Human dental pulp stem cells differentiate into neural crest-derived melanocytes and have label-retaining and sphere-forming abilities. Stem Cells Dev. 2008;17(6):1175–84. https://doi.org/10.1089/scd.2008.0012.

    Article  PubMed  Google Scholar 

  17. Heneidi S, Simerman AA, Keller E, Singh P, Li X, Dumesic DA, et al. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue. PLoS One. 2013;8(6):e64752. https://doi.org/10.1371/journal.pone.0064752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A. 2010a;107(19):8639–43. https://doi.org/10.1073/pnas.0911647107. 0911647107 [pii].

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M. Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc. 2013;8(7):1391–415. https://doi.org/10.1038/nprot.2013.076.

    Article  CAS  PubMed  Google Scholar 

  20. Liu Q, Zhang RZ, Li D, Cheng S, Yang YH, Tian T, et al. Muse cells, a new type of pluripotent stem cell derived from human fibroblasts. Cell Reprogram. 2016;18(2):67–77. https://doi.org/10.1089/cell.2015.0085.

    Article  CAS  PubMed  Google Scholar 

  21. Ogura F, Wakao S, Kuroda Y, Tsuchiyama K, Bagheri M, Heneidi S, et al. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem Cells Dev. 2014;23(7):717–28. https://doi.org/10.1089/scd.2013.0473.

    Article  CAS  PubMed  Google Scholar 

  22. Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H, et al. Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci U S A. 2011;108(24):9875–80. https://doi.org/10.1073/pnas.1100816108.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dezawa M. Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of Muse cells to tissue regeneration. Cell Transplant. 2016. https://doi.org/10.3727/096368916X690881.

  24. Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433–8.

    Article  CAS  PubMed  Google Scholar 

  25. Weissman IL, Shizuru JA. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood. 2008;112(9):3543–53. https://doi.org/10.1182/blood-2008-08-078220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393–403.

    CAS  PubMed  Google Scholar 

  27. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  28. Kuroda Y, Kitada M, Wakao S, Dezawa M. Bone marrow mesenchymal cells: how do they contribute to tissue repair and are they really stem cells? Arch Immunol Ther Exp. 2011;59(5):369–78. https://doi.org/10.1007/s00005-011-0139-9.

    Article  Google Scholar 

  29. Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004;22(3):377–84. https://doi.org/10.1634/stemcells.22-3-377.

    Article  PubMed  Google Scholar 

  30. Qayyum AA, Haack-Sorensen M, Mathiasen AB, Jorgensen E, Ekblond A, Kastrup J. Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. Regen Med. 2012;7(3):421–8. https://doi.org/10.2217/rme.12.17.

    Article  CAS  PubMed  Google Scholar 

  31. Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 2005;309(5732):314–7. https://doi.org/10.1126/science.1110364.

    Article  CAS  PubMed  Google Scholar 

  32. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, et al. Bone marrow as a potential source of hepatic oval cells. Science. 1999;284(5417):1168–70.

    Article  CAS  PubMed  Google Scholar 

  33. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, et al. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest. 2004;113(12):1701–10. https://doi.org/10.1172/JCI20935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H. Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci. 2001;14(11):1771–6.

    Article  CAS  PubMed  Google Scholar 

  35. Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol. 2007;207(2):267–74. https://doi.org/10.1016/j.expneurol.2007.06.029. S0014-4886(07)00257-9 [pii].

    Article  CAS  PubMed  Google Scholar 

  36. Fox NW, Damjanov I, Knowles BB, Solter D. Stage-specific embryonic antigen 3 as a marker of visceral extraembryonic endoderm. Dev Biol. 1984;103(1):263–6.

    Article  CAS  PubMed  Google Scholar 

  37. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  CAS  PubMed  Google Scholar 

  38. Galderisi U, Giordano A. The gap between the physiological and therapeutic roles of mesenchymal stem cells. Med Res Rev. 2014;34(5):1100–26. https://doi.org/10.1002/med.21322.

    Article  CAS  PubMed  Google Scholar 

  39. Hori E, Hayakawa Y, Hayashi T, Hori S, Okamoto S, Shibata T, et al. Mobilization of pluripotent multilineage-differentiating stress-enduring cells in ischemic stroke. J Stroke Cerebrovasc Dis. 2016. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.12.033.

  40. Kinoshita K, Kuno S, Ishimine H, Aoi N, Mineda K, Kato H, et al. Therapeutic potential of adipose-derived SSEA-3-positive muse cells for treating diabetic skin ulcers. Stem Cells Transl Med. 2015;4(2):146–55. https://doi.org/10.5966/sctm.2014-0181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S, et al. Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells. 2016;34(1):160–73. https://doi.org/10.1002/stem.2206.

    Article  CAS  PubMed  Google Scholar 

  42. Tsuchiyama K, Wakao S, Kuroda Y, Ogura F, Nojima M, Sawaya N, et al. Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts. J Invest Dermatol. 2013;133(10):2425–35. https://doi.org/10.1038/jid.2013.172.

    Article  CAS  PubMed  Google Scholar 

  43. Katagiri H, Kushida Y, Nojima M, Kuroda Y, Wakao S, Ishida K, et al. A distinct subpopulation of bone marrow mesenchymal stem cells, muse cells, directly commit to the replacement of liver components. Am J Transplant. 2016;16(2):468–83. https://doi.org/10.1111/ajt.13537.

    Article  CAS  PubMed  Google Scholar 

  44. Yamauchi T, Kuroda Y, Morita T, Shichinohe H, Houkin K, Dezawa M, et al. Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice. PLoS One. 2015;10(3):e0116009. https://doi.org/10.1371/journal.pone.0116009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dong L, Li Y, Cao J, Liu F, Pier E, Chen J, et al. FGF2 regulates melanocytes viability through the STAT3-transactivated PAX3 transcription. Cell Death Differ. 2012;19(4):616–22. https://doi.org/10.1038/cdd.2011.132.

    Article  CAS  PubMed  Google Scholar 

  46. Kondo T, Hearing VJ. Update on the regulation of mammalian melanocyte function and skin pigmentation. Expert Rev Dermatol. 2011;6(1):97–108. https://doi.org/10.1586/edm.10.70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Steingrimsson E, Copeland NG, Jenkins NA. Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet. 2004;38:365–411. https://doi.org/10.1146/annurev.genet.38.072902.092717.

    Article  CAS  PubMed  Google Scholar 

  48. Lee SA, Son YO, Kook SH, Choi KC, Lee JC. Ascorbic acid increases the activity and synthesis of tyrosinase in B16F10 cells through activation of p38 mitogen-activated protein kinase. Arch Dermatol Res. 2011;303(9):669–78. https://doi.org/10.1007/s00403-011-1158-4.

    Article  CAS  PubMed  Google Scholar 

  49. Motohashi T, Aoki H, Chiba K, Yoshimura N, Kunisada T. Multipotent cell fate of neural crest-like cells derived from embryonic stem cells. Stem Cells. 2007;25(2):402–10. https://doi.org/10.1634/stemcells.2006-0323.

    Article  CAS  PubMed  Google Scholar 

  50. Toma JG, McKenzie IA, Bagli D, Miller FD. Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells. 2005;23(6):727–37. https://doi.org/10.1634/stemcells.2004-0134.

    Article  CAS  PubMed  Google Scholar 

  51. Fernandes KJ, McKenzie IA, Mill P, Smith KM, Akhavan M, Barnabe-Heider F, et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004;6(11):1082–93. https://doi.org/10.1038/ncb1181.

    Article  CAS  PubMed  Google Scholar 

  52. Joannides A, Gaughwin P, Schwiening C, Majed H, Sterling J, Compston A, et al. Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet. 2004;364(9429):172–8. https://doi.org/10.1016/S0140-6736(04)16630-0.

    Article  CAS  PubMed  Google Scholar 

  53. Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol. 2001;3(9):778–84. https://doi.org/10.1038/ncb0901-778.

    Article  CAS  PubMed  Google Scholar 

  54. Li L, Fukunaga-Kalabis M, Yu H, Xu X, Kong J, Lee JT, et al. Human dermal stem cells differentiate into functional epidermal melanocytes. J Cell Sci. 2010;123.(Pt 6:853–60. https://doi.org/10.1242/jcs.061598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu H, Fang D, Kumar SM, Li L, Nguyen TK, Acs G, et al. Isolation of a novel population of multipotent adult stem cells from human hair follicles. Am J Pathol. 2006;168(6):1879–88. https://doi.org/10.2353/ajpath.2006.051170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Dezawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dezawa, M., Tsuchiyama, K., Yamazaki, K., Aiba, S. (2019). Regenerating Melanocytes: Current Stem Cell Approaches with Focus on Muse Cells. In: Picardo, M., Taïeb, A. (eds) Vitiligo. Springer, Cham. https://doi.org/10.1007/978-3-319-62960-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62960-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62958-2

  • Online ISBN: 978-3-319-62960-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics