Vitiligo pp 193-204 | Cite as

Methods to Study Vitiligo: Noninvasive Techniques and In Vivo Reflectance Confocal Microscopy

  • Hee Young KangEmail author
  • Marco Ardigò


Standardized methodologies for describing and classifying vitiligo and for assessing the effect of treatments are needed to be developed. Currently, there are many noninvasive techniques available for diagnosis and assessment of vitiligo. Objective measurements of vitiligo area using digital image analysis are available. Noninvasive instruments such as reflectance spectroscopy or dermoscopy are methods to characterize and study vitiligo lesion. The Vitiligo European Task Force (VETF) recommends Wood’s light examination as a diagnostic tool in evaluating vitiligo to assess staging and spreading in a selected area. More reliable and quantitative measures to augment clinical judgment of vitiligo assessment include image analysis of digital photographs. The digital image analysis system can overcome the inevitable differences between observers, which are intrinsic to a visual grading method, and is advisable for clinical trials on vitiligo to objectively assess repigmentation in limited lesions (Linthorst Homan MW et al. J Eur Acad Dermatol Venereol 27(2):e235–238, 2013). However, this technique needs to be properly validated.

Limitations of this method include as the technique is complex and laborious, it is only feasible for monitoring limited areas of vitiligo and less feasible in daily practice. Mexameter measurement provides a clinically accessible and straightforward means of increasing diagnostic accuracies in hypopigmentary disorders. In vivo reflectance confocal microscopy (RCM) is a real-time, repetitive imaging tool that provides noninvasive images at a nearly histological resolution. RCM could be used in the therapeutic monitoring and evaluation of the evolution of vitiligo. Limitations of RCM include that the instrument is expensive and the RCM imaging can still be time-consuming especially for the systematic examination of lesion area. Also, this machine requires a group of technicians to operate it and an expert to analyze the images.


  1. 1.
    Asawanonda P, Taylor CR. Wood’s light in dermatology. Int J Dermatol. 1999;38(11):801–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Taieb A, Picardo M. The definition and assessment of vitiligo: a consensus report of the VitiligoEropean Task Force. Pigment Cell Res. 2007;20(1):27–35.PubMedCrossRefGoogle Scholar
  3. 3.
    Alghamdi KM, Kumar A, Taïeb A, et al. Assessment methods for the evaluation of vitiligo. J Eur Acad Dermatol Venereol. 2012;26(12):1463–71.PubMedGoogle Scholar
  4. 4.
    Hamzavi I, Jain H, McLean D, et al. Parametric modeling of narrowband UV-B phototherapy for vitiligo using a novel quantitative tool: the Vitiligo Area Scoring Index. Arch Dermatol. 2004;140(6):677–83.PubMedCrossRefGoogle Scholar
  5. 5.
    Bhor U, Pande S. Scoring systems in dermatology. Indian J Dermatol Venereol Leprol. 2006;72(4):315–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Aydin F, Senturk N, Sahin B, et al. A practical method for the estimation of vitiligo surface area: a comparison between the point counting and digital planimetry techniques. Eur J Dermatol. 2007;17(1):30–2.PubMedGoogle Scholar
  7. 7.
    VanGeel NAC, Vander Haeghen YMSJ, Ongenae K, et al. A new image analysis system useful for surface assessment of vitiligo lesions in transplantation studies. Eur J Dermatol. 2004;14(3):150–5.Google Scholar
  8. 8.
    Marrakchi S, Bouassida S, Meziou TJ, et al. An objective method for the assessment of vitiligo treatment. Pigment Cell Melanoma Res. 2008;21(1):106–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Sanclemente G, Garcia JJ, Zuleta JJ, et al. A double-blind, randomized trial of 0.05% betamethasone vs. topical catalase/dismutase superoxide in vitiligo. J Eur Acad Dermatol Venereol. 2008;22(11):1359–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Linthorst Homan MW, Wolkerstorfer A, Sprangers MA, et al. Digital image analysis vs. clinical assessment to evaluate repigmentation after punch grafting in vitiligo. J Eur Acad Dermatol Venereol. 2013;27(2):e235–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Nugroho H, Ahmad Fadzil MH, Shamsudin N, et al. Computerised image analysis of vitiligo lesion: evaluation using manually defined lesion areas. Skin Res Technol. 2013;19(1):e72–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Oh TS, Lee O, Kim JE, et al. Quantitative method for measuring therapeutic efficacy of the 308 nm excimer laser for vitiligo. Skin Res Technol. 2012;18(3):347–55.PubMedCrossRefGoogle Scholar
  13. 13.
    Shamsudin N, Hussein SH, Nugroho H, et al. Objective assessment of vitiligo with a computerised digital imaging analysis system. Australas J Dermatol. 2015;56(4):285–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Sheth VM, Rithe R, Pandya AG, et al. A pilot study to determine vitiligo target size using a computer-based image analysis program. J Am Acad Dermatol. 2015;73(2):342–5.PubMedCrossRefGoogle Scholar
  15. 15.
    Kohli I, Isedeh P, Al-Jamal M, et al. Three-dimensional imaging of vitiligo. Exp Dermatol. 2015;24(11):879–80.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Clarys P, Alewaeters K, Lambrecht R, et al. Skin color measurements: comparison between three instruments: the Chromameter(R), the DermaSpectrometer(R) and the Mexameter(R). Skin Res Technol. 2000;6(4):230–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Brazzelli V, Muzio F, Antoninetti M, et al. The perilesional skin in vitiligo: a colorimetric in vivo study of 25 patients. Photodermatol Photoimmunol Photomed. 2008;24(6):314–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Noborio R, Nakamura M, Yoshida M, et al. Monotherapy for vitiligo using a 308-nm xenon-chloride excimer laser: colorimetric assessment of factors that influence treatment efficacy. J Dermatol. 2012;39(12):1102–3.PubMedCrossRefGoogle Scholar
  19. 19.
    Park ES, Na JI, Kim SO, et al. Application of a pigment measuring device--Mexameter--for the differential diagnosis of vitiligo and nevus depigmentosus. Skin Res Technol. 2006;12(4):298–302.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee DY, Kim CR, Park JH, et al. The incidence of leukotrichia in segmental vitiligo: implication of poor response to medical treatment. Int J Dermatol. 2011;50(8):925–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Kim MS, Cho EB, Park EJ, et al. Effect of excimer laser treatment on vitiliginous areas with leukotrichia after confirmation by dermoscopy. Int J Dermatol. 2016;55:886. Scholar
  22. 22.
    Thatte SS, Khopkar US. The utility of dermoscopy in the diagnosis of evolving lesions of vitiligo. Indian J Dermatol Venereol Leprol. 2014;80(6):505–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Kang HY, Bahadoran P, Ortonne JP. Reflectance confocal microscopy for pigmentary disorders. Exp Dermatol. 2010;19(3):233–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Kang HY, le Duff F, Passeron T, et al. A noninvasive technique, reflectance confocal microscopy, for the characterization of melanocyte loss in untreated and treated vitiligo lesions. J Am Acad Dermatol. 2010;63(5):e97–100.PubMedCrossRefGoogle Scholar
  25. 25.
    Ardigo M, Malizewsky I, Dell’anna ML, et al. Preliminary evaluation of vitiligo using in vivo reflectance confocal microscopy. J Eur Acad Dermatol Venereol. 2007;21(10):1344–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Lai LG, Xu AE. In vivo reflectance confocal microscopy imaging of vitiligo, nevus depigmentosus and nevus anemicus. Skin Res Technol. 2011;17(4):404–10.PubMedCrossRefGoogle Scholar
  27. 27.
    Li W, Wang S, Xu AE. Role of in vivo reflectance confocal microscopy in determining stability in vitiligo: a preliminary study. Indian J Dermatol. 2013;58(6):429–32.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Pan ZY, Yan F, Zhang ZH, et al. In vivo reflectance confocal microscopy for the differential diagnosis between vitiligo and nevus depigmentosus. Int J Dermatol. 2011;50(6):740–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Xiang W, Xu A, Xu J, et al. In vivo confocal laser scanning microscopy of hypopigmented macules: a preliminary comparison of confocal images in vitiligo, nevus depigmentosus and postinflammatory hypopigmentation. Lasers Med Sci. 2010;25(4):551–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of DermatologyAjou University School of MedicineSuwonKorea
  2. 2.San Gallicano Dermatological InstituteIRCCSRomeItaly

Personalised recommendations