Shi, D., He, P., Lian, J., Chaud, X., Bud’ko, S.L., Beaugnon, E., Wang, L.M., Ewing, R.C., Tournier, R.: Magnetic alignment of carbon nanofibers in polymer composites and anisotropy of mechanical properties. J. App. Phys. 97, 064312 (2005)
CrossRef
Google Scholar
Itoh, M., Takahira, M., Yatagai, T.: Spatial arrangement of small particles by imaging laser trapping system. Opt. Rev. 5(1), 55–58 (1998)
CrossRef
Google Scholar
Jiang, Y., Narushima, T., Okamoto, H.: Nonlinear optical effects in trapping nanoparticles with femtosecond pulses. Nat. Phys. 6, 1005–1009 (2010)
CrossRef
Google Scholar
Niss, M.: History of the Lenz-Ising model, 1920–1950: from ferromagnetic to cooperative phenomena. Arch. Hist. Exact Sci. 59(3), 267–318 (2005)
MathSciNet
CrossRef
MATH
Google Scholar
Press, D., Ladd, T.D., Zhang, B., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)
CrossRef
Google Scholar
Bagnold, R.E.: The Physics of Blown Sand and Desert Dunes. Chapmann and Hall, Methuen, London (1941)
Google Scholar
Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B237, 37–72 (1952)
MathSciNet
CrossRef
Google Scholar
Tyson, J.J.: The Belousov-Zhabotinskii Reaction. Lecture Notes in Biomathematics. Springer, Heidelberg (1976). doi:10.1007/978-3-642-93046-1
CrossRef
MATH
Google Scholar
Greenberg, J.M., Hastings, S.P.: Spatial patterns for discrete models of diffusion in excitable media. SIAM J. Appl. Math. 34(3), 515–523 (1978)
MathSciNet
CrossRef
MATH
Google Scholar
Progogine, I., Stengers, I.: Order out of Chaos. Heinemann, London (1983)
Google Scholar
Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)
CrossRef
MATH
Google Scholar
Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation. Birkäuser, Boston (2005)
MATH
Google Scholar
Désérable, D., Dupont, P., Hellou, M., Kamali-Bernard, S.: Cellular automata in complex matter. Complex Syst. 20(1), 67–91 (2011)
MathSciNet
Google Scholar
Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601–644 (1983)
MathSciNet
CrossRef
MATH
Google Scholar
Nagpal, R.: Programmable pattern-formation and scale-independence. In: Minai, A.A., Bar-Yam, Y. (eds.) Unifying Themes in Complex Sytems IV, pp. 275–282. Springer, Heidelberg (2008). doi:10.1007/978-3-540-73849-7_31
CrossRef
Google Scholar
Yamins, D., Nagpal, R., Automated global-to-local programming in 1-D spatial multi-agent systems. In: Proceedings of the 7th International Conference on AAMAS, pp. 615–622 (2008)
Google Scholar
Hoffmann, R.: How agents can form a specific pattern. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 660–669. Springer, Cham (2014). doi:10.1007/978-3-319-11520-7_70
Google Scholar
Hoffmann, R.: Cellular automata agents form path patterns effectively. Acta Phys. Pol. B Proc. Suppl. 9(1), 63–75 (2016)
CrossRef
Google Scholar
Hoffmann, R., Désérable, D.: Line patterns formed by cellular automata agents. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds.) ACRI 2016. LNCS, vol. 9863, pp. 424–434. Springer, Cham (2016). doi:10.1007/978-3-319-44365-2_42
CrossRef
Google Scholar
Birgin, E.G., Lobato, R.D., Morabito, R.: An effective recursive partitioning approach for the packing of identical rectangles in a rectangle. J. Oper. Res. Soc. 61, 303–320 (2010)
CrossRef
MATH
Google Scholar
Bonabeau, E.: From classical models of morphogenesis to agent-based models of pattern formation. Artif. Life 3(3), 191–211 (1997)
CrossRef
Google Scholar
Hamann, H., Schmickl, T., Crailsheim, K.: Self-organized pattern formation in a swarm system as a transient phenomenon of non-linear dynamics. Math. Comput. Mod. Dyn. Syst. 18(1), 39–50 (2012)
MathSciNet
CrossRef
MATH
Google Scholar
Bandini, S., Vanneschi, L., Wuensche, A., Shehata, A.B.: A neuro-genetic framework for pattern recognition in complex systems. Fundam. Inf. 87(2), 207–226 (2008)
MathSciNet
MATH
Google Scholar
Halbach, M., Hoffmann, R., Both, L.: Optimal 6-state algorithms for the behavior of several moving creatures. In: Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 571–581. Springer, Heidelberg (2006). doi:10.1007/11861201_66
CrossRef
Google Scholar
Ediger, P., Hoffmann, R.: Optimizing the creature’s rule for all-to-all communication. In: Adamatzky, A., et al. (eds.) Automata 2008, pp. 398–412 (2008)
Google Scholar
Ediger, P., Hoffmann, R.: Solving all-to-all communication with CA agents more effectively with flags. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 182–193. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03275-2_19
CrossRef
Google Scholar
Hoffmann, R., Désérable, D.: All-to-all communication with cellular automata agents in 2\(D\) grids. J. Supercomput. 69(1), 70–80 (2014)
CrossRef
Google Scholar
Ediger, P., Hoffmann, R.: CA models for target searching agents. Elec. Notes Theor. Comput. Sci. 252, 41–54 (2009)
MathSciNet
CrossRef
MATH
Google Scholar
Ediger, P., Hoffmann, R., Désérable, D.: Routing in the triangular grid with evolved agents. J. Cell. Autom. 7(1), 47–65 (2012)
MathSciNet
MATH
Google Scholar
Ediger, P., Hoffmann, R., Désérable, D.: Rectangular vs triangular routing with evolved agents. J. Cell. Autom. 8(1–2), 73–89 (2013)
MathSciNet
MATH
Google Scholar
Komann, M., Mainka, A., Fey, D.: Comparison of evolving uniform, non-uniform cellular automaton, and genetic programming for centroid detection with hardware agents. In: Malyshkin, V. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 432–441. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73940-1_43
CrossRef
Google Scholar
Mesot, B., Sanchez, E., Peña, C.-A., Perez-Uribe, A.: SOS++: finding smart behaviors using learning and evolution. In: Artificial Life VIII, pp. 264–273. MIT Press (2002)
Google Scholar
Blum, M., Sakoda, W.J.: On the capability of finite automata in 2 and 3 dimensional space. In: SFCS 1977, pp. 147–161 (1977)
Google Scholar
Rosenberg, A.L.: Algorithmic insights into finite-state robots. In: Sirakoulis, G., Adamatzky, A. (eds.) Robots and Lattice Automata. Emergence, Complexity and Computation, vol. 13, pp. 1–31. Springer, Cham (2015). doi:10.1007/978-3-319-10924-4_1
Google Scholar
Hoffmann, R.: The GCA-w massively parallel model. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 194–206. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03275-2_20
CrossRef
Google Scholar
Hoffmann, R.: Rotor-routing algorithms described by CA-w. Acta Phys. Pol. B Proc. Suppl. 5(1), 53–67 (2012)
CrossRef
Google Scholar
Hoffmann, R., Désérable, D.: Routing by cellular automata agents in the triangular lattice. In: Sirakoulis, G., Adamatzky, A. (eds.) Robots and Lattice Automata. Emergence, Complexity and Computation, vol. 13, pp. 117–147. Springer, Cham (2015). doi:10.1007/978-3-319-10924-4_6
Google Scholar
Lahlouhi, A.: MAS-td: an approach to termination detection of multi-agent systems. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds.) MICAI 2014. LNCS, vol. 8856, pp. 472–482. Springer, Cham (2014). doi:10.1007/978-3-319-13647-9_42
Google Scholar