Skip to main content

Molecular Classification and Prognostic Signatures of Breast Tumors

  • Chapter
  • First Online:
Oncoplastic and Reconstructive Breast Surgery

Abstract

Breast cancer is a complex and heterogeneous disease where tumors of the same apparent prognostic type can vary widely in their responsiveness to therapy and survival rates. Traditionally the classification of breast cancer is performed based on clinical-histopathological parameters, such as age, tumor size, histological grade, lymph node status and by the analysis of estrogen (ER), progesterone (PR), and human epidermal growth factor 2 (HER2) receptors expression. The evaluation of these combined factors has been widely used in clinical practice and formed the basis to classify patients into various risk categories such as the St. Gallen criteria [1] and the Nottingham Prognostic Index [2]. However, the markedly extensive breast cancer heterogeneity combined with the lack of reliable predictive factors among these categories limits their ability to distinguish subtle phenotypic differences that may present relevant therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldhirsch A, Ingle JN, Gelber RD et al (2009) Thresholds for therapies: highlights of the St. Gallen International Expert Consensus on the primary therapy of early breast cancer. Ann Oncol 8:1319–1329

    Google Scholar 

  2. Galea MH, Blamey RW, Elston CE et al (1992) The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat 3:207–219

    Google Scholar 

  3. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumors. Nature 6797:747–752

    Google Scholar 

  4. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 19:10869–10874

    Google Scholar 

  5. Prat A, Pineda E, Adamo B et al (2015) Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 24(Suppl 2):S26–S35

    PubMed  Google Scholar 

  6. Lehmann BD, Pietenpol JA (2015) Clinical implications of molecular heterogeneity in triple negative breast cancer. Breast 24(Suppl 2):S36–S40

    PubMed  Google Scholar 

  7. Cancer Genome Atlas (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Google Scholar 

  8. Curtis C, Shah SP, Chin SF et al (2012) The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 486:346–352

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gingras I, Desmedt C, Ignatiadis M et al (2015) CCR 20th Anniversary Commentary: gene-expression signature in breast cancer—where did it start and where are we now? Clin Cancer Res 21:4743–4746

    CAS  PubMed  Google Scholar 

  10. Pinkel D, Segraves R, Sudar D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211

    CAS  PubMed  Google Scholar 

  11. Duggan DJ, Bittner M, Chen Y et al (1999) Expression profiling using cDNA microarrays. Nat Genet 21:10–14

    CAS  PubMed  Google Scholar 

  12. Pollack JR, Sørlie T, Perou CM et al (2002) Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci U S A 99:12963–12968

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shipitsin M, Campbell LL, Argani P et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273

    CAS  PubMed  Google Scholar 

  14. Stingl J, Caldas C (2007) Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat Rev Cancer 7:791–799

    CAS  PubMed  Google Scholar 

  15. Weigelt B, Reis-Filho JS (2009) Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol 6:718–730

    CAS  PubMed  Google Scholar 

  16. Laakso M, Loman N, Borg A et al (2005) Cytokeratin 5/14- positive breast cancer: true basal phenotype confined to BRCA1 tumors. Mod Pathol 18:1321–1328

    CAS  PubMed  Google Scholar 

  17. Lakhani SR, Reis-Filho JS, Fulford L et al (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11:5175–5180

    CAS  PubMed  Google Scholar 

  18. Turner NC, Reis-Filho JS (2006) Basal-like breast cancer and the BRCA1 phenotype. Oncogene 25:5846–5853

    CAS  PubMed  Google Scholar 

  19. Eerola H, Heinonen M, Heikkila P et al (2008) Basal cytokeratins in breast tumours among BRCA1, BRCA2 and mutation-negative breast cancer families. Breast Cancer Res 10:R17

    PubMed  PubMed Central  Google Scholar 

  20. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100:8418–8423

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sorlie T, Wang Y, Xiao C et al (2006) Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics 7:127

    PubMed  PubMed Central  Google Scholar 

  22. Farmer P, Bonnefoi H, Becette V et al (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24:4660–4671

    CAS  PubMed  Google Scholar 

  23. Doane AS, Danso M, Lal P et al (2006) An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 25:3994–4008

    CAS  PubMed  Google Scholar 

  24. Hu Z, Fan C, Oh DS et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96

    PubMed  PubMed Central  Google Scholar 

  25. Teschendorff AE, Caldas C (2008) A robust classifier of high predictive value to identify good prognosis patients in ER-negative breast cancer. Breast Cancer Res 10:R73

    PubMed  PubMed Central  Google Scholar 

  26. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K et al (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69:4116–4124

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Banneau G, Guedj M, MacGrogan G et al (2010) Molecular apocrine differentiation is a common feature of breast cancer in patients with germline PTEN mutations. Breast Cancer Res 12:R63

    PubMed  PubMed Central  Google Scholar 

  28. Prat A, Parker JS, Karginova O et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68

    PubMed  PubMed Central  Google Scholar 

  29. Lehmann BD, Bauer JA, Chen X et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig 121:2750–2767

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Prat A, Adamo B, Cheang MC et al (2013) Molecular characterization of basal-like and non-basal-like triple-negative breast cancer. Oncologist 18:123–133

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Burstein MD, Tsimelzon A, Poage GM et al (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21:1688–1698

    CAS  PubMed  Google Scholar 

  32. Purrington KS, Visscher DW, Wang C et al (2016) Genes associated with histopathologic features of triple negative breast tumors predict molecular subtypes. Breast Cancer Res Treat 157:117–131

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360:790–800

    CAS  PubMed  Google Scholar 

  34. Weigelt B, Baehner FL, Reis-Filho JS (2010) The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 220:263–280

    CAS  PubMed  Google Scholar 

  35. Rouzier R, Perou CM, Symmans WF et al (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11:5678–5685

    CAS  PubMed  Google Scholar 

  36. Martin M, Romero A, Cheang MC et al (2011) Genomic predictors of response to doxorubicin versus docetaxel in primary breast cancer. Breast Cancer Res Treat 128:127–136

    CAS  PubMed  Google Scholar 

  37. Prat A, Lluch A, Albanell J et al (2014) Predicting response and survival in chemotherapy-treated triple-negative breast cancer. Br J Cancer 111:1532–1541

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheang MCU, Chia SK, Voduc D et al (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101:736–750

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Parker JS, Mullins M, Cheang MC et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167

    PubMed  PubMed Central  Google Scholar 

  40. Nielsen TO, Parker JS, Leung S et al (2010) A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 16:5222–5232

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Iwamoto T, Bianchini G, Booser D et al (2011) Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer. J Natl Cancer Inst 103:264–272

    CAS  PubMed  Google Scholar 

  42. Arteaga CL, Sliwkowski MX, Osborne CK et al (2011) Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 9:16–32

    PubMed  Google Scholar 

  43. Mukohara T (2011) Role of HER2-targeted agents in adjuvant treatment for breast cancer. Chemother Res Pract 2011:730360

    PubMed  PubMed Central  Google Scholar 

  44. Banerjee S, Reis-Filho JS, Ashley S et al (2006) Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J Clin Pathol 59:729–735

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rakha EA, Reis-Filho JS, Ellis IO (2008) Basal-like breast cancer: a critical review. J Clin Oncol 26:2568–2581

    PubMed  Google Scholar 

  46. Fong PC, Boss DS, Yap TA et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134

    CAS  PubMed  Google Scholar 

  47. Carey LA, Dees EC, Sawyer L et al (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13:2329–2334

    CAS  PubMed  Google Scholar 

  48. Millikan RC, Newman B, Tse CK et al (2008) Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109:123–139

    PubMed  Google Scholar 

  49. Lehmann BD, Jovanović B, Chen X et al (2016) Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One 11:e0157368

    PubMed  PubMed Central  Google Scholar 

  50. Wallden B, Storhoff J, Nielsen T et al (2015) Development and verification of the PAM50-based Prosigna breast cancer gene signature assay. BMC Med Genomics 8:54

    PubMed  PubMed Central  Google Scholar 

  51. Goldhirsch A, Wood WC, Coates AS et al (2011) Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22:1736–1747

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Goldhirsch A, Winer EP, Coates AS et al (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer. Ann Oncol 24:2206–2223

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Coates AS, Winer EP, Goldrich A et al (2015) Tailoring therapies—improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol 26:1533–1546

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Takahashi RU, Miyazaki H, Ochiya T (2015) The roles of microRNAs in breast cancer. Cancers (Basel) 7:598–616

    CAS  Google Scholar 

  55. Di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Annu Rev Pathol 9:287–314

    PubMed  Google Scholar 

  56. Andorfer CA, Necela BM, Thompson EA et al (2011) MicroRNA signatures: clinical biomarkers for the diagnosis and treatment of breast cancer. Trends Mol Med 17:313–319

    CAS  PubMed  Google Scholar 

  57. Friedman RC, Farh KK, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–2104

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Voorhoeve PM (2010) MicroRNAs: oncogenes, tumor suppressors or master regulators of cancer heterogeneity? Biochem Biophys Acta 1805:72–86

    CAS  PubMed  Google Scholar 

  60. Blenkiron C, Goldstein LD, Thorne NP et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8:R214

    PubMed  PubMed Central  Google Scholar 

  61. Sugita B, Gill M, Mahajan A et al (2016) Differentially expressed miRNAs in triple negative breast cancer between African-American and non-Hispanic white women. Oncotarget 7:79274–79279

    PubMed  PubMed Central  Google Scholar 

  62. Lowery AJ, Miller N, Devaney A et al (2009) MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res 11:R27

    PubMed  PubMed Central  Google Scholar 

  63. Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Foekens JA, Sieuwerts AM, Smid M et al (2008) Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci U S A 105:13021–13026

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Riaz M, van Jaarsveld MT, Hollestelle A et al (2015) miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs. Breast Cancer Res 15:R33

    Google Scholar 

  66. Bediaga NG, Acha Sagredo A, Guerra I et al (2010) DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Res 12:R77

    PubMed  PubMed Central  Google Scholar 

  67. Holm K, Hegardt C, Staaf J et al (2010) Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res 12:R36

    PubMed  PubMed Central  Google Scholar 

  68. Rønneberg JA, Fleischer T, Solvang HK et al (2011) Methylation profiling with a panel of cancer related genes: association with estrogen receptor, TP53 mutation status and expression subtypes in sporadic breast cancer. Mol Oncol 5:61–76

    PubMed  Google Scholar 

  69. Flanagan JM, Cocciardi S, Waddell N et al (2010) DNA methylome of familial breast cancer identifies distinct profiles defined by mutation status. Am J Hum Genet 86:420–433

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Conway K, Edmiston SN, May R et al (2014) DNA methylation profiling in the carolina breast cancer study defines cancer subclasses differing in clinicopathologic characteristics and survival. Breast Cancer Res 16:450

    PubMed  PubMed Central  Google Scholar 

  71. Stefansson OA, Moran S, Gomez A et al (2015) A DNA methylation-based definition of biologically distinct breast cancer subtypes. Mol Oncol 9:555–568

    CAS  PubMed  Google Scholar 

  72. Sharma P, Stecklein SR, Kimler BF et al (2014) The prognostic value of promoter methylation in early stage triple negative breast cancer. J Cancer Ther Res 3:1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Watanabe Y, Maeda I, Oikawa R et al (2013) Aberrant DNA methylation status of DNA repair genes in breast cancer treated with neoadjuvant chemotherapy. Genes Cells 18:1120–1130

    CAS  PubMed  Google Scholar 

  74. Xu Y, Diao L, Chen Y et al (2013) Promoter methylation of BRCA1 in triple-negative breast cancer predicts sensitivity to adjuvant chemotherapy. Ann Oncol 24:1498–1505

    CAS  PubMed  Google Scholar 

  75. Ignatov T, Poehlmann A, Ignatov A et al (2013) BRCA1 promoter methylation is a marker of better response to anthracycline-based therapy in sporadic TNBC. Breast Cancer Res Treat 141:205–212

    CAS  PubMed  Google Scholar 

  76. Ciriello G, Sinha R, Hoadley KA et al (2013) The molecular diversity of Luminal A breast tumors. Breast Cancer Res Treat 141:409–420

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cornen S, Guille A, Adélaïde J et al (2014) Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling. PLoS One 9:e81843

    PubMed  PubMed Central  Google Scholar 

  78. He J, Yang J, Chen W et al (2015) Molecular features of triple negative breast cancer: microarray evidence and further integrated analysis. PLoS One 10:e0129842

    PubMed  PubMed Central  Google Scholar 

  79. Tishchenko I, Milioli HH, Riveros C et al (2016) Extensive transcriptomic and genomic analysis provides new insights about luminal breast cancers. PLoS One 11:e0158259

    PubMed  PubMed Central  Google Scholar 

  80. Netanely D, Avraham A, Ben-Baruch A et al (2016) Expression and methylation patterns partition luminal—a breast tumors into distinct prognostic subgroups. Breast Cancer Res 18:74

    PubMed  PubMed Central  Google Scholar 

  81. Liu YR, Jiang YZ, Xu XE et al (2016) Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res 18:33

    PubMed  PubMed Central  Google Scholar 

  82. Weisman PS, Ng CK, Brogi E et al (2016) Genetic alterations of triple negative breast cancer by targeted next-generation sequencing and correlation with tumor morphology. Mod Pathol 29:476–488

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Eifel P, Axelson JA, Costa J et al (2001) National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer. November 1-3, 2000. J Natl Cancer Inst 93:979–989

    CAS  PubMed  Google Scholar 

  84. Harris LN, Ismaila N, McShane LM et al (2016) Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology Clinical Practice Guideline Summary. J Oncol Pract 12:384–389

    PubMed  Google Scholar 

  85. Duffy MJ, O’Donovan N, McDermott E et al (2016) Validated biomarkers: the key to precision treatment in patients with breast cancer. Breast 29:192–201

    PubMed  Google Scholar 

  86. van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 6871:530–536

    Google Scholar 

  87. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    PubMed  Google Scholar 

  88. Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192

    CAS  PubMed  Google Scholar 

  89. Bueno-de-Mesquita JM, van Harten WH, Retel VP et al (2007) Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol 8:1079–1087

    CAS  PubMed  Google Scholar 

  90. Mook S, Schmidt MK, Viale G et al (2009) The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1-3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat 116:295–302

    CAS  PubMed  Google Scholar 

  91. Cardoso F, van’t Veer LJ, Bogaerts J et al (2016) 70-Gene signature as an aid to treatment decisions in early-stage breast cancer. N Engl J Med 375:717–729

    CAS  PubMed  Google Scholar 

  92. Emiel R et al (2011) The EORTC 10041/BIG 03-04 MINDACT trial is feasible: results of the pilot phase. Eur J Cancer 47:2742–2749

    Google Scholar 

  93. Piccart M, Rutgers E, van’t Veer L, et al. Primary analysis of the EORTC 10041/BIG 3-04 MINDACT study: a prospective, randomized study evaluating the clinical utility of the 70-gene signature (MammaPrint) combined with common clinical-pathological criteria for selection of patients for adjuvant chemotherapy in breast cancer with 0 to 3 positive nodes. 2016 American Association of Cancer Res Annual Meeting. Abstract CT039. Presented April 18, 2016

    Google Scholar 

  94. Cobleigh MA, Bitterman P, Baker J et al (2003) Tumor gene expression predicts distant disease-free survival (DDFS) in breast cancer patients with 10 or more positive nodes: high throughout RT-PCR assay of paraffin-embedded tumor tissues. Prog Proc Am Soc Clin Oncol 22:850–850

    Google Scholar 

  95. Esteban J, Baker J, Cronin M et al (2003) Tumor gene expression and prognosis in breast cancer: multi-gene RT-PCR assay of paraffin-embedded tissue. Prog Proc Am Soc Clin Oncol 22:850

    Google Scholar 

  96. Paik S, Shak S, Tang G et al (2003) Multi-gene RT-PCR assay for predicting recurrence in node negative breast cancer patients—NSABP studies B-20 and B-14. Breast Cancer Res Treat 82:A16

    Google Scholar 

  97. Fisher B, Dignam J, Wolmark N et al (1997) Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J Natl Cancer Inst 89:1673–1682

    CAS  PubMed  Google Scholar 

  98. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826

    CAS  PubMed  Google Scholar 

  99. Fisher B, Costantino J, Redmond C et al (1989) A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. N Engl J Med 320:479–484

    CAS  PubMed  Google Scholar 

  100. Habel LA, Shak S, Jacobs MK et al (2006) A population based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res 8:R25

    PubMed  PubMed Central  Google Scholar 

  101. Dowsett M, Cuzick J, Wale C et al (2010) Prediction of risk of distant recurrence using the 21-gene recurrence score in nodenegative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol 11:1829–1834

    Google Scholar 

  102. Sparano JA (2006) TAILORx: trial assigning individualized options for treatment (Rx). Clin Breast Cancer 7:347–350

    PubMed  Google Scholar 

  103. Sparano JA, Gray RJ, Makower DF et al (2015) Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med 373:2005–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ma XJ, Salunga R, Dahiya S et al (2008) A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res 14:2601–2608

    CAS  PubMed  Google Scholar 

  105. Jerevall PL, Ma XJ, Li H et al (2011) Prognostic utility of HOXB13:IL17BR and molecular grade index in early-stage breast cancer patients from the Stockholm trial. Br J Cancer 104:1762–1769

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Chang HY, Sneddon JB, Alizadeh AA et al (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2:E7

    PubMed  PubMed Central  Google Scholar 

  107. Laas E, Mallon P, Duhoux FP et al (2016) Low concordance between gene expression signatures in ER positive HER2 negative breast carcinoma could impair their clinical application. PLoS One 11:e0148957

    PubMed  PubMed Central  Google Scholar 

  108. Ma CX, Bose R, Ellis MJ (2016) Prognostic and predictive biomarkers of endocrine responsiveness for estrogen receptor positive breast cancer. Adv Exp Med Biol 882:125–154

    CAS  PubMed  Google Scholar 

  109. Ernst B, Anderson KS (2015) Immunotherapy for the treatment of breast cancer. Curr Oncol Rep 17:5

    PubMed  Google Scholar 

  110. Bedognetti D, Hnesdrickx W, Marincola FM et al (2015) Prognostic and predictive immune gene signatures in breast cancer. Curr Oncol Rep 27:433–444

    CAS  Google Scholar 

  111. Perez EA, Thompson EA, Ballman KV et al (2015) Genomic analysis reveals that immune function genes are strongly linked to clinical outcome in the North Central Cancer Treatment Group N9831 Adjuvant Trastuzumab Trial. J Clin Oncol 33:701–708

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Li X, Wetherilt CS, Krishnamurti U et al (2016) Stromal PD-L1 expression is associated with better disease-free survival in triple-negative breast cancer. Am J Clin Pathol 146:496–502

    CAS  PubMed  Google Scholar 

  113. Mori H, Kubo M, Yamaguchi R et al (2017) The combination of PD-L1 expression and decreased tumor-infiltrating lymphocytes is associated with a poor prognosis in triple-negative breast cancer. Oncotarget 8(9):15584–15592. https://doi.org/10.18632/oncotarget.14698

    Article  PubMed  PubMed Central  Google Scholar 

  114. Botti G, Collina F, Scognamiglio G et al (2017) Programmed death ligand 1 (PD-L1) tumor expression is associated with a better prognosis and diabetic disease in triple negative breast cancer patients. Int J Mol Sci 18(2):pii: E459

    Google Scholar 

  115. Li X, Li M, Lian Z et al (2016) Prognostic role of programmed death ligand-1 expression in breast cancer: a systematic review and meta-analysis. Target Oncol 11:753–761

    PubMed  Google Scholar 

  116. García-Teijido P, Cabal ML, Fernández IP et al (2016) Tumor-infiltrating lymphocytes in triple negative breast cancer: the future of immune targeting. Clin Med Insights Oncol 10(Suppl 1):31–39

    PubMed  PubMed Central  Google Scholar 

  117. Wang C, Zhu H, Zhou Y et al (2017) Prognostic value of PD-L1 in breast cancer: a meta-analysis. Breast J 23(4):436–443. https://doi.org/10.1111/tbj.12753

    Article  CAS  PubMed  Google Scholar 

  118. Fan C, Prat A, Parker JS et al (2011) Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures. BMC Med Genomics 9(4):3

    Google Scholar 

  119. Gyorffy B, Hatzis C, Sanft C et al (2015) Multigene prognostic tests in breast cancer: past, present, future. Breast Cancer Res 17:11

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciane R. Cavalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cavalli, L.R., Cavalli, I.J. (2019). Molecular Classification and Prognostic Signatures of Breast Tumors. In: Urban, C., Rietjens, M., El-Tamer, M., Sacchini, V.S. (eds) Oncoplastic and Reconstructive Breast Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-62927-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62927-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62925-4

  • Online ISBN: 978-3-319-62927-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics