Skip to main content

Breast Cancer Pathology

  • Chapter
  • First Online:
Oncoplastic and Reconstructive Breast Surgery

Abstract

Pathologists play a pivotal role in the management of patients with breast diseases, particularly in the current era of multidisciplinary and personalized treatment. The pathologist establishes the diagnosis, assesses the extent of the disease and predictive and prognostic markers, evaluates the tumor response post-neoadjuvant systemic therapy, and also incorporates the latest advances in molecular testing into routine clinical practice. This chapter provides an overview of the approach used by pathologists to examine and sample breast tissue specimens and to interpret and report the microscopic findings including the assessment of margin status and evaluation of the tumor biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shabaik A, Lin G, Peterson M et al (2011) Reliability of Her2/neu, estrogen receptor, and progesterone receptor testing by immunohistochemistry on cell block of FNA and serous effusions from patients with primary and metastatic breast carcinoma. Diagn Cytopathol 39:328–332

    Article  PubMed  Google Scholar 

  2. Gorman BK, Kosarac O, Chakraborty S et al (2012) Comparison of breast carcinoma prognostic/predictive biomarkers on cell blocks obtained by various methods: cellient, formalin and thrombin. Acta Cytol 56:289–296

    Article  CAS  PubMed  Google Scholar 

  3. Vohra P, Buelow B, Chen YY et al (2016) Estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression in breast cancer FNA cell blocks and paired histologic specimens: a large retrospective study. Cancer Cytopathol 124(11):828–835

    Article  CAS  PubMed  Google Scholar 

  4. Dong J, Ly A, Arpin R et al (2016) Breast fine needle aspiration continues to be relevant in a large academic medical center: experience from Massachusetts General Hospital. Breast Cancer Res Treat 158:297–305

    Article  PubMed  Google Scholar 

  5. Bossuyt V, Provenzano E, Symmans WF et al (2015) Recommendations for standardized pathological characterization of residual disease for neoadjuvant clinical trials of breast cancer by the BIG-NABCG collaboration. Ann Oncol 26:1280–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Provenzano E, Bossuyt V, Viale G et al (2015) Standardization of pathologic evaluation and reporting of postneoadjuvant specimens in clinical trials of breast cancer: recommendations from an international working group. Mod Pathol 28:1185–1201

    Article  PubMed  Google Scholar 

  7. Kunju LP, Kleer CG (2007) Significance of flat epithelial atypia on mammotome core needle biopsy: should it be excised? Hum Pathol 38:35–41

    Article  PubMed  Google Scholar 

  8. Ingegnoli A, d’Aloia C, Frattaruolo A et al (2010) Flat epithelial atypia and atypical ductal hyperplasia: carcinoma underestimation rate. Breast J 16:55–59

    Article  PubMed  Google Scholar 

  9. Noske A, Pahl S, Fallenberg E et al (2010) Flat epithelial atypia is a common subtype of B3 breast lesions and is associated with noninvasive cancer but not with invasive cancer in final excision histology. Hum Pathol 41:522–527

    Article  CAS  PubMed  Google Scholar 

  10. Lavoue V, Roger CM, Poilblanc M et al (2011) Pure flat epithelial atypia (DIN 1a) on core needle biopsy: study of 60 biopsies with follow-up surgical excision. Breast Cancer Res Treat 125:121–126

    Article  PubMed  Google Scholar 

  11. Solorzano S, Mesurolle B, Omeroglu A et al (2011) Flat epithelial atypia of the breast: pathological-radiological correlation. AJR Am J Roentgenol 197:740–746

    Article  PubMed  Google Scholar 

  12. Peres A, Barranger E, Becette V et al (2012) Rates of upgrade to malignancy for 271 cases of flat epithelial atypia (FEA) diagnosed by breast core biopsy. Breast Cancer Res Treat 133:659–666

    Article  CAS  PubMed  Google Scholar 

  13. Sohn V, Porta R, Brown T (2011) Flat epithelial atypia of the breast on core needle biopsy: an indication for surgical excision. Mil Med 176:1347–1350

    Article  PubMed  Google Scholar 

  14. Bianchi S, Bendinelli B, Castellano I et al (2012) Morphological parameters of flat epithelial atypia (FEA) in stereotactic vacuum-assisted needle core biopsies do not predict the presence of malignancy on subsequent surgical excision. Virchows Arch 461:405–417

    Article  PubMed  Google Scholar 

  15. Khoumais NA, Scaranelo AM, Moshonov H et al (2013) Incidence of breast cancer in patients with pure flat epithelial atypia diagnosed at core-needle biopsy of the breast. Ann Surg Oncol 20:133–138

    Article  PubMed  Google Scholar 

  16. Biggar MA, Kerr KM, Erzetich LM et al (2012) Columnar cell change with atypia (flat epithelial atypia) on breast core biopsy-outcomes following open excision. Breast J 18:578–581

    Article  PubMed  Google Scholar 

  17. Dialani V, Venkataraman S, Frieling G et al (2014) Does isolated flat epithelial atypia on vacuum-assisted breast core biopsy require surgical excision? Breast J 20:606–614

    Article  PubMed  Google Scholar 

  18. Yu CC, Ueng SH, Cheung YC et al (2015) Predictors of underestimation of malignancy after image-guided core needle biopsy diagnosis of flat epithelial atypia or atypical ductal hyperplasia. Breast J 21:224–232

    Article  PubMed  Google Scholar 

  19. Martel M, Barron-Rodriguez P, Tolgay Ocal I et al (2007) Flat DIN 1 (flat epithelial atypia) on core needle biopsy: 63 cases identified retrospectively among 1,751 core biopsies performed over an 8-year period (1992-1999). Virchows Arch 451:883–891

    Article  PubMed  Google Scholar 

  20. Senetta R, Campanino PP, Mariscotti G et al (2009) Columnar cell lesions associated with breast calcifications on vacuum-assisted core biopsies: clinical, radiographic, and histological correlations. Mod Pathol 22:762–769

    Article  PubMed  Google Scholar 

  21. Piubello Q, Parisi A, Eccher A et al (2009) Flat epithelial atypia on core needle biopsy: which is the right management? Am J Surg Pathol 33:1078–1084

    Article  PubMed  Google Scholar 

  22. Chivukula M, Bhargava R, Tseng G et al (2009) Clinicopathologic implications of “flat epithelial atypia” in core needle biopsy specimens of the breast. Am J Clin Pathol 131:802–808

    Article  PubMed  Google Scholar 

  23. Prowler VL, Joh JE, Acs G et al (2014) Surgical excision of pure flat epithelial atypia identified on core needle breast biopsy. Breast 23:352–356

    Article  PubMed  Google Scholar 

  24. Ceugnart L, Doualliez V, Chauvet MP et al (2013) Pure flat epithelial atypia: is there a place for routine surgery? Diagn Interv Imaging 94:861–869

    Article  CAS  PubMed  Google Scholar 

  25. Calhoun BC, Sobel A, White RL et al (2015) Management of flat epithelial atypia on breast core biopsy may be individualized based on correlation with imaging studies. Mod Pathol 28:670–676

    Article  PubMed  Google Scholar 

  26. Murray MP, Luedtke C, Liberman L et al (2013) Classic lobular carcinoma in situ and atypical lobular hyperplasia at percutaneous breast core biopsy: outcomes of prospective excision. Cancer 119:1073–1079

    Article  PubMed  Google Scholar 

  27. Rendi MH, Dintzis SM, Lehman CD et al (2012) Lobular in-situ neoplasia on breast core needle biopsy: imaging indication and pathologic extent can identify which patients require excisional biopsy. Ann Surg Oncol 19:914–921

    Article  PubMed  Google Scholar 

  28. Chaudhary S, Lawrence L, McGinty G et al (2013) Classic lobular neoplasia on core biopsy: a clinical and radio-pathologic correlation study with follow-up excision biopsy. Mod Pathol 26:762–771

    Article  PubMed  Google Scholar 

  29. D’Alfonso TM, Wang K, Chiu YL et al (2013) Pathologic upgrade rates on subsequent excision when lobular carcinoma in situ is the primary diagnosis in the needle core biopsy with special attention to the radiographic target. Arch Pathol Lab Med 137:927–935

    Article  PubMed  Google Scholar 

  30. Nakhlis F, Gilmore L, Gelman R et al (2016) Incidence of adjacent synchronous invasive carcinoma and/or ductal carcinoma in-situ in patients with lobular neoplasia on core biopsy: results from a prospective multi-institutional registry (TBCRC 020). Ann Surg Oncol 23:722–728

    Article  PubMed  Google Scholar 

  31. Chivukula M, Haynik DM, Brufsky A et al (2008) Pleomorphic lobular carcinoma in situ (PLCIS) on breast core needle biopsies: clinical significance and immunoprofile. Am J Surg Pathol 32:1721–1726

    Article  PubMed  Google Scholar 

  32. Susnik B, Day D, Abeln E et al (2016) Surgical outcomes of lobular neoplasia diagnosed in core biopsy: prospective study of 316 cases. Clin Breast Cancer 16:507–513

    Article  PubMed  Google Scholar 

  33. Carder PJ, Shaaban A, Alizadeh Y et al (2010) Screen-detected pleomorphic lobular carcinoma in situ (PLCIS): risk of concurrent invasive malignancy following a core biopsy diagnosis. Histopathology 57:472–478

    Article  PubMed  Google Scholar 

  34. Flanagan MR, Rendi MH, Calhoun KE et al (2015) Pleomorphic lobular carcinoma in situ: radiologic-pathologic features and clinical management. Ann Surg Oncol 22:4263–4269

    Article  PubMed  PubMed Central  Google Scholar 

  35. Clement PB, Azzopardi JG (1983) Microglandular adenosis of the breast—a lesion simulating tubular carcinoma. Histopathology 7:169–180

    Article  CAS  PubMed  Google Scholar 

  36. Rosen PP (1983) Microglandular adenosis. A benign lesion simulating invasive mammary carcinoma. Am J Surg Pathol 7:137–144

    Article  CAS  PubMed  Google Scholar 

  37. Tavassoli FA, Norris HJ (1983) Microglandular adenosis of the breast. A clinicopathologic study of 11 cases with ultrastructural observations. Am J Surg Pathol 7:731–737

    Article  CAS  PubMed  Google Scholar 

  38. Sabate JM, Gomez A, Torrubia S et al (2002) Microglandular adenosis of the breast in a BRCA1 mutation carrier: radiological features. Eur Radiol 12:1479–1482

    Article  CAS  PubMed  Google Scholar 

  39. Shin SJ, Simpson PT, Da Silva L et al (2009) Molecular evidence for progression of microglandular adenosis (MGA) to invasive carcinoma. Am J Surg Pathol 33:496–504

    Article  PubMed  Google Scholar 

  40. Geyer FC, Berman SH, Marchio C et al (2017) Genetic analysis of microglandular adenosis and acinic cell carcinomas of the breast provides evidence for the existence of a low-grade triple-negative breast neoplasia family. Mod Pathol 30(1):69–84

    Article  CAS  PubMed  Google Scholar 

  41. Geyer FC, Lacroix-Triki M, Colombo PE et al (2012) Molecular evidence in support of the neoplastic and precursor nature of microglandular adenosis. Histopathology 60:E115–E130

    Article  PubMed  Google Scholar 

  42. Bandyopadhyay S, Barak S, Hayek K et al (2016) Can problematic fibroepithelial lesions be accurately classified on core needle biopsies? Hum Pathol 47:38–44

    Article  PubMed  Google Scholar 

  43. Gould D, Salmans J, Lassinger B et al (2011) Factors associated with cystosarcoma phyllodes of the breast after core needle biopsy identify cellular fibroepithelial lesion. J Clin Oncol 29:e11518

    Article  Google Scholar 

  44. Gould DJ, Salmans JA, Lassinger BK et al (2012) Factors associated with phyllodes tumor of the breast after core needle biopsy identifies fibroepithelial neoplasm. J Surg Res 178:299–303

    Article  PubMed  Google Scholar 

  45. Jacobs TW, Chen YY, Guinee DG Jr et al (2005) Fibroepithelial lesions with cellular stroma on breast core needle biopsy: are there predictors of outcome on surgical excision? Am J Clin Pathol 124:342–354

    Article  PubMed  Google Scholar 

  46. Jara-Lazaro AR, Akhilesh M, Thike AA et al (2010) Predictors of phyllodes tumours on core biopsy specimens of fibroepithelial neoplasms. Histopathology 57:220–232

    Article  PubMed  Google Scholar 

  47. Komenaka IK, El-Tamer M, Pile-Spellman E et al (2003) Core needle biopsy as a diagnostic tool to differentiate phyllodes tumor from fibroadenoma. Arch Surg 138:987–990

    Article  PubMed  Google Scholar 

  48. Resetkova E, Khazai L, Albarracin CT et al (2010) Clinical and radiologic data and core needle biopsy findings should dictate management of cellular fibroepithelial tumors of the breast. Breast J 16:573–580

    Article  PubMed  Google Scholar 

  49. Yasir S, Gamez R, Jenkins S et al (2014) Significant histologic features differentiating cellular fibroadenoma from phyllodes tumor on core needle biopsy specimens. Am J Clin Pathol 142:362–369

    Article  PubMed  Google Scholar 

  50. Pareja F, Corben AD, Brennan SB et al (2016) Breast intraductal papillomas without atypia in radiologic-pathologic concordant core-needle biopsies: rate of upgrade to carcinoma at excision. Cancer 122(18):2819–2827

    Article  PubMed  Google Scholar 

  51. Hong YR, Song BJ, Jung SS et al (2016) Predictive factors for upgrading patients with benign breast papillary lesions using a core needle biopsy. J Breast Cancer 19:410–416

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kim SY, Kim EK, Lee HS et al (2016) Asymptomatic benign papilloma without atypia diagnosed at ultrasonography-guided 14-gauge core needle biopsy: which subgroup can be managed by observation? Ann Surg Oncol 23:1860–1866

    Article  PubMed  Google Scholar 

  53. Li X, Weaver O, Desouki MM et al (2012) Microcalcification is an important factor in the management of breast intraductal papillomas diagnosed on core biopsy. Am J Clin Pathol 138:789–795

    Article  PubMed  Google Scholar 

  54. Nakhlis F, Ahmadiyeh N, Lester S et al (2015) Papilloma on core biopsy: excision vs. observation. Ann Surg Oncol 22:1479–1482

    Article  PubMed  Google Scholar 

  55. Swapp RE, Glazebrook KN, Jones KN et al (2013) Management of benign intraductal solitary papilloma diagnosed on core needle biopsy. Ann Surg Oncol 20:1900–1905

    Article  PubMed  Google Scholar 

  56. Bernik SF, Troob S, Ying BL et al (2009) Papillary lesions of the breast diagnosed by core needle biopsy: 71 cases with surgical follow-up. Am J Surg 197:473–478

    Article  PubMed  Google Scholar 

  57. Lu Q, Tan EY, Ho B et al (2012) Surgical excision of intraductal breast papilloma diagnosed on core biopsy. ANZ J Surg 82:168–172

    Article  PubMed  Google Scholar 

  58. Fu CY, Chen TW, Hong ZJ et al (2012) Papillary breast lesions diagnosed by core biopsy require complete excision. Eur J Surg Oncol 38:1029–1035

    Article  PubMed  Google Scholar 

  59. Rizzo M, Linebarger J, Lowe MC et al (2012) Management of papillary breast lesions diagnosed on core-needle biopsy: clinical pathologic and radiologic analysis of 276 cases with surgical follow-up. J Am Coll Surg 214:280–287

    Article  PubMed  Google Scholar 

  60. Foley NM, Racz JM, Al-Hilli Z et al (2015) An international multicenter review of the malignancy rate of excised papillomatous breast lesions. Ann Surg Oncol 22(Suppl 3):S385–S390

    Article  PubMed  Google Scholar 

  61. Glenn ME, Throckmorton AD, Thomison JB 3rd et al (2015) Papillomas of the breast 15 mm or smaller: 4-year experience in a community-based dedicated breast imaging clinic. Ann Surg Oncol 22:1133–1139

    Article  PubMed  Google Scholar 

  62. Conlon N, D’Arcy C, Kaplan JB et al (2015) Radial scar at image-guided needle biopsy: is excision necessary? Am J Surg Pathol 39:779–785

    Article  PubMed  PubMed Central  Google Scholar 

  63. Donaldson AR, Sieck L, Booth CN et al (2016) Radial scars diagnosed on breast core biopsy: frequency of atypia and carcinoma on excision and implications for management. Breast 30:201–207

    Article  PubMed  Google Scholar 

  64. Hou Y, Hooda S, Li Z (2016) Surgical excision outcome after radial scar without atypical proliferative lesion on breast core needle biopsy: a single institutional analysis. Ann Diagn Pathol 21:35–38

    Article  PubMed  Google Scholar 

  65. Kim EM, Hankins A, Cassity J et al (2016) Isolated radial scar diagnosis by core-needle biopsy: is surgical excision necessary? Springerplus 5:398

    Article  PubMed  PubMed Central  Google Scholar 

  66. Leong RY, Kohli MK, Zeizafoun N et al (2016) Radial scar at percutaneous breast biopsy that does not require surgery. J Am Coll Surg 223:712–716

    Article  PubMed  Google Scholar 

  67. Li Z, Ranade A, Zhao C (2016) Pathologic findings of follow-up surgical excision for radial scar on breast core needle biopsy. Hum Pathol 48:76–80

    Article  PubMed  Google Scholar 

  68. Matrai C, D’Alfonso TM, Pharmer L et al (2015) Advocating nonsurgical management of patients with small, incidental radial scars at the time of needle core biopsy: a study of 77 cases. Arch Pathol Lab Med 139:1137–1142

    Article  PubMed  Google Scholar 

  69. Miller CL, West JA, Bettini AC et al (2014) Surgical excision of radial scars diagnosed by core biopsy may help predict future risk of breast cancer. Breast Cancer Res Treat 145:331–338

    Article  PubMed  Google Scholar 

  70. Nassar A, Conners AL, Celik B et al (2015) Radial scar/complex sclerosing lesions: a clinicopathologic correlation study from a single institution. Ann Diagn Pathol 19:24–28

    Article  PubMed  Google Scholar 

  71. Resetkova E, Edelweiss M, Albarracin CT et al (2011) Management of radial sclerosing lesions of the breast diagnosed using percutaneous vacuum-assisted core needle biopsy: recommendations for excision based on seven years’ of experience at a single institution. Breast Cancer Res Treat 127:335–343

    Article  PubMed  Google Scholar 

  72. Dershaw DD, Morris EA, Liberman L et al (1996) Nondiagnostic stereotaxic core breast biopsy: results of rebiopsy. Radiology 198:323–325

    Article  CAS  PubMed  Google Scholar 

  73. Meyer JE, Smith DN, Lester SC et al (1998) Large-needle core biopsy: nonmalignant breast abnormalities evaluated with surgical excision or repeat core biopsy. Radiology 206:717–720

    Article  CAS  PubMed  Google Scholar 

  74. Liberman L, Dershaw DD, Glassman JR et al (1997) Analysis of cancers not diagnosed at stereotactic core breast biopsy. Radiology 203:151–157

    Article  CAS  PubMed  Google Scholar 

  75. Liberman L, Feng TL, Dershaw DD et al (1998) US-guided core breast biopsy: use and cost-effectiveness. Radiology 208:717–723

    Article  CAS  PubMed  Google Scholar 

  76. Philpotts LE, Shaheen NA, Carter D et al (1999) Comparison of rebiopsy rates after stereotactic core needle biopsy of the breast with 11-gauge vacuum suction probe versus 14-gauge needle and automatic gun. AJR Am J Roentgenol 172:683–687

    Article  CAS  PubMed  Google Scholar 

  77. Liberman L, Drotman M, Morris EA et al (2000) Imaging-histologic discordance at percutaneous breast biopsy. Cancer 89:2538–2546

    Article  CAS  PubMed  Google Scholar 

  78. Lee JM, Kaplan JB, Murray MP et al (2007) Imaging histologic discordance at MRI-guided 9-gauge vacuum-assisted breast biopsy. AJR Am J Roentgenol 189:852–859

    Article  PubMed  Google Scholar 

  79. Morrow M, Van Zee KJ, Solin LJ et al (2016) Society of Surgical Oncology-American Society for Radiation Oncology-American Society of Clinical Oncology Consensus Guideline on margins for breast-conserving surgery with whole-breast irradiation in ductal carcinoma in situ. Ann Surg Oncol 23:3801–3810

    Article  PubMed  PubMed Central  Google Scholar 

  80. Moran MS, Schnitt SJ, Giuliano AE et al (2014) Society of Surgical Oncology-American Society for Radiation Oncology Consensus Guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. Ann Surg Oncol 21:704–716

    Article  PubMed  Google Scholar 

  81. Giuliano AE, Hunt KK, Ballman KV et al (2011) Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA 305:569–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brogi E, Torres-Matundan E, Tan LK et al (2005) The results of frozen section, touch preparation, and cytological smear are comparable for intraoperative examination of sentinel lymph nodes: a study in 133 breast cancer patients. Ann Surg Oncol 12:173–180

    Article  PubMed  Google Scholar 

  83. Hortobagyi GN, Connolly J, D’Orsi CJ, Edge SB, Mittendorf EA, Rugo HS, Solin LJ, Weaver DL, Winchester DJ, Giuliano A (2017) AJCC cancer staging manual—breast, 8th edn. Springer, Chicago

    Google Scholar 

  84. Amin MB, Edge SB, Brookland RK et al (2017) AJJC cancer staging manual, 8th edn

    Google Scholar 

  85. Sung JS, King V, Thornton CM et al (2013) Safety and efficacy of radioactive seed localization with I-125 prior to lumpectomy and/or excisional biopsy. Eur J Radiol 82:1453–1457

    Article  PubMed  Google Scholar 

  86. Murphy JO, Moo TA, King TA et al (2013) Radioactive seed localization compared to wire localization in breast-conserving surgery: initial 6-month experience. Ann Surg Oncol 20:4121–4127

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dauer LT, Thornton C, Miodownik D et al (2013) Radioactive seed localization with 125I for nonpalpable lesions prior to breast lumpectomy and/or excisional biopsy: methodology, safety, and experience of initial year. Health Phys 105:356–365

    Article  CAS  PubMed  Google Scholar 

  88. Harvey RP (2016) Dose assessment and considerations when a radioactive seed is unrecoverable in a breast surgical patient. Health Phys 111:S180–S1S2

    Article  CAS  PubMed  Google Scholar 

  89. Gilcrease MZ, Dogan BE, Black DM et al (2016) Transection of radioactive seeds in breast specimens. Am J Surg Pathol 40:1375–1379

    Article  PubMed  Google Scholar 

  90. Marudanayagam R, Singhal R, Tanchel B et al (2008) Effect of cavity shaving on reoperation rate following breast-conserving surgery. Breast J 14:570–573

    Article  PubMed  Google Scholar 

  91. Wolf JH, Wen Y, Axelrod D et al (2011) Higher volume at time of breast conserving surgery reduces re-excision in DCIS. Int J Surg Oncol 2011:785803

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chagpar AB, Killelea BK, Tsangaris TN et al (2015) A randomized, controlled trial of cavity shave margins in breast cancer. N Engl J Med 373:503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jones V, Linebarger J, Perez S et al (2016) Excising additional margins at initial breast-conserving surgery (BCS) reduces the need for re-excision in a predominantly African American population: a report of a randomized prospective study in a public hospital. Ann Surg Oncol 23:456–464

    Article  PubMed  Google Scholar 

  94. Schnitt SJ, Moran MS, Houssami N et al (2015) The Society of Surgical Oncology-American Society for Radiation Oncology Consensus Guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer: perspectives for pathologists. Arch Pathol Lab Med 139:575–577

    Article  PubMed  Google Scholar 

  95. Sahoo S, Lester SC (2012) Pathology considerations in patients treated with neoadjuvant chemotherapy. Surg Pathol Clin 5:749–774

    Article  PubMed  Google Scholar 

  96. Symmans WF, Peintinger F, Hatzis C et al (2007) Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 25:4414–4422

    Article  PubMed  Google Scholar 

  97. Hammond ME, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Arch Pathol Lab Med 134:907–922

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wolff AC, Hammond MEH, Allison KH et al (2018) Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol 36:2105–2122

    Article  CAS  PubMed  Google Scholar 

  99. Khoury T, Sait S, Hwang H et al (2009) Delay to formalin fixation effect on breast biomarkers. Mod Pathol 22:1457–1467

    Article  CAS  PubMed  Google Scholar 

  100. Yildiz-Aktas IZ, Dabbs DJ, Bhargava R (2012) The effect of cold ischemic time on the immunohistochemical evaluation of estrogen receptor, progesterone receptor, and HER2 expression in invasive breast carcinoma. Mod Pathol 25:1098–1105

    Article  CAS  PubMed  Google Scholar 

  101. Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, van de Vijver MJ (2012) WHO classification of tumours of the breast, 4th edn. International Agency for Research on Cancer (IARC)

    Google Scholar 

  102. http://seer.cancer.gov/

  103. Consensus Conference on the classification of ductal carcinoma in situ. The Consensus Conference Committee (1997). Cancer 80:1798–1802

    Google Scholar 

  104. Bijker N, Peterse JL, Duchateau L et al (2001) Risk factors for recurrence and metastasis after breast-conserving therapy for ductal carcinoma-in-situ: analysis of European Organization for Research and Treatment of Cancer Trial 10853. J Clin Oncol 19:2263–2271

    Article  CAS  PubMed  Google Scholar 

  105. EORTC Breast Cancer Cooperative Group, EORTC Radiotherapy Group, Bijker N et al (2006) Breast-conserving treatment with or without radiotherapy in ductal carcinoma-in-situ: ten-year results of European Organisation for Research and Treatment of Cancer randomized phase III trial 10853—a study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. J Clin Oncol 24:3381–3387

    Article  Google Scholar 

  106. Solin LJ, Gray R, Hughes LL et al (2015) Surgical excision without radiation for ductal carcinoma in situ of the breast: 12-year results from the ECOG-ACRIN E5194 study. J Clin Oncol 33(33):3938–3944

    Article  PubMed  PubMed Central  Google Scholar 

  107. Paone JF, Baker RR (1981) Pathogenesis and treatment of Paget’s disease of the breast. Cancer 48:825–829

    Article  CAS  PubMed  Google Scholar 

  108. Bijker N, Rutgers EJ, Duchateau L et al (2001) Breast-conserving therapy for Paget disease of the nipple: a prospective European Organization for Research and Treatment of Cancer study of 61 patients. Cancer 91:472–477

    Article  CAS  PubMed  Google Scholar 

  109. Kothari AS, Beechey-Newman N, Hamed H et al (2002) Paget disease of the nipple: a multifocal manifestation of higher-risk disease. Cancer 95:1–7

    Article  PubMed  Google Scholar 

  110. Buerger H, Otterbach F, Simon R et al (1999) Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J Pathol 189:521–526

    Article  CAS  PubMed  Google Scholar 

  111. Simpson PT, Reis-Filho JS, Gale T et al (2005) Molecular evolution of breast cancer. J Pathol 205:248–254

    Article  CAS  PubMed  Google Scholar 

  112. Rakha EA, Green AR, Powe DG et al (2006) Chromosome 16 tumor-suppressor genes in breast cancer. Genes Chromosomes Cancer 45:527–535

    Article  CAS  PubMed  Google Scholar 

  113. Simpson PT, Reis-Filho JS, Lambros MB et al (2008) Molecular profiling pleomorphic lobular carcinomas of the breast: evidence for a common molecular genetic pathway with classic lobular carcinomas. J Pathol 215:231–244

    Article  CAS  PubMed  Google Scholar 

  114. Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70

    Article  CAS  Google Scholar 

  115. Ciriello G, Gatza ML, Beck AH et al (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163:506–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Desmedt C, Zoppoli G, Gundem G et al (2016) Genomic characterization of primary invasive lobular breast cancer. J Clin Oncol 34:1872–1881

    Article  CAS  PubMed  Google Scholar 

  117. Guilford P, Hopkins J, Harraway J et al (1998) E-cadherin germline mutations in familial gastric cancer. Nature 392:402–405

    Article  CAS  PubMed  Google Scholar 

  118. Richards FM, McKee SA, Rajpar MH et al (1999) Germline E-cadherin gene (CDH1) mutations predispose to familial gastric cancer and colorectal cancer. Hum Mol Genet 8:607–610

    Article  CAS  PubMed  Google Scholar 

  119. Guilford PJ, Hopkins JB, Grady WM et al (1999) E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. Hum Mutat 14:249–255

    Article  CAS  PubMed  Google Scholar 

  120. Caldas C, Carneiro F, Lynch HT et al (1999) Familial gastric cancer: overview and guidelines for management. J Med Genet 36:873–880

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Guiu S, Wolfer A, Jacot W et al (2014) Invasive lobular breast cancer and its variants: how special are they for systemic therapy decisions? Crit Rev Oncol Hematol 92:235–257

    Article  PubMed  Google Scholar 

  122. Collins LC, Carlo VP, Hwang H et al (2006) Intracystic papillary carcinomas of the breast: a reevaluation using a panel of myoepithelial cell markers. Am J Surg Pathol 30:1002–1007

    Article  PubMed  Google Scholar 

  123. Wynveen CA, Nehhozina T, Akram M et al (2011) Intracystic papillary carcinoma of the breast: an in situ or invasive tumor? Results of immunohistochemical analysis and clinical follow-up. Am J Surg Pathol 35:1–14

    Article  PubMed  Google Scholar 

  124. Rakha EA, Gandhi N, Climent F et al (2011) Encapsulated papillary carcinoma of the breast: an invasive tumor with excellent prognosis. Am J Surg Pathol 35:1093–1103

    Article  PubMed  Google Scholar 

  125. Lopez-Garcia MA, Geyer FC, Natrajan R et al (2010) Transcriptomic analysis of tubular carcinomas of the breast reveals similarities and differences with molecular subtype-matched ductal and lobular carcinomas. J Pathol 222:64–75

    CAS  PubMed  Google Scholar 

  126. Weigelt B, Geyer FC, Horlings HM et al (2009) Mucinous and neuroendocrine breast carcinomas are transcriptionally distinct from invasive ductal carcinomas of no special type. Mod Pathol 22:1401–1414

    Article  CAS  PubMed  Google Scholar 

  127. Lacroix-Triki M, Suarez PH, MacKay A et al (2010) Mucinous carcinoma of the breast is genomically distinct from invasive ductal carcinomas of no special type. J Pathol 222:282–298

    Article  CAS  PubMed  Google Scholar 

  128. Marchio C, Iravani M, Natrajan R et al (2009) Mixed micropapillary-ductal carcinomas of the breast: a genomic and immunohistochemical analysis of morphologically distinct components. J Pathol 218:301–315

    Article  CAS  PubMed  Google Scholar 

  129. Marchio C, Iravani M, Natrajan R et al (2008) Genomic and immunophenotypical characterization of pure micropapillary carcinomas of the breast. J Pathol 215:398–410

    Article  CAS  PubMed  Google Scholar 

  130. Duprez R, Wilkerson PM, Lacroix-Triki M et al (2012) Immunophenotypic and genomic characterization of papillary carcinomas of the breast. J Pathol 226:427–441

    Article  CAS  PubMed  Google Scholar 

  131. Piscuoglio S, Ng CK, Martelotto LG et al (2014) Integrative genomic and transcriptomic characterization of papillary carcinomas of the breast. Mol Oncol 8:1588–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rakha EA, Lee AH, Evans AJ et al (2010) Tubular carcinoma of the breast: further evidence to support its excellent prognosis. J Clin Oncol 28:99–104

    Article  PubMed  Google Scholar 

  133. Moatamed NA, Apple SK (2006) Extensive sampling changes T-staging of infiltrating lobular carcinoma of breast: a comparative study of gross versus microscopic tumor sizes. Breast J 12:511–517

    Article  PubMed  Google Scholar 

  134. Lester SC, Bose S, Chen YY et al (2009) Protocol for the examination of specimens from patients with ductal carcinoma in situ of the breast. Arch Pathol Lab Med 133:15–25

    Article  PubMed  Google Scholar 

  135. Intra M, Zurrida S, Maffini F et al (2003) Sentinel lymph node metastasis in microinvasive breast cancer. Ann Surg Oncol 10:1160–1165

    Article  PubMed  Google Scholar 

  136. Katz A, Gage I, Evans S et al (2006) Sentinel lymph node positivity of patients with ductal carcinoma in situ or microinvasive breast cancer. Am J Surg 191:761–766

    Article  PubMed  Google Scholar 

  137. Guth AA, Mercado C, Roses DF et al (2008) Microinvasive breast cancer and the role of sentinel node biopsy: an institutional experience and review of the literature. Breast J 14:335–339

    Article  PubMed  Google Scholar 

  138. Lyons JM 3rd, Stempel M, Van Zee KJ et al (2012) Axillary node staging for microinvasive breast cancer: is it justified? Ann Surg Oncol 19:3416–3421

    Article  PubMed  Google Scholar 

  139. Kapoor NS, Shamonki J, Sim MS et al (2013) Impact of multifocality and lymph node metastasis on the prognosis and management of microinvasive breast cancer. Ann Surg Oncol 20:2576–2581

    Article  PubMed  Google Scholar 

  140. Hanna MG, Jaffer S, Bleiweiss IJ et al (2014) Re-evaluating the role of sentinel lymph node biopsy in microinvasive breast carcinoma. Mod Pathol 27:1489–1498

    Article  CAS  PubMed  Google Scholar 

  141. Matsen CB, Hirsch A, Eaton A et al (2014) Extent of microinvasion in ductal carcinoma in situ is not associated with sentinel lymph node metastases. Ann Surg Oncol 21:3330–3335

    Article  PubMed  PubMed Central  Google Scholar 

  142. Orzalesi L, Casella D, Criscenti V et al (2016) Microinvasive breast cancer: pathological parameters, cancer subtypes distribution, and correlation with axillary lymph nodes invasion. Results of a large single-institution series. Breast Cancer 23(4):640–648

    Article  PubMed  Google Scholar 

  143. Margalit DN, Sreedhara M, Chen YH et al (2013) Microinvasive breast cancer: ER, PR, and HER-2/neu status and clinical outcomes after breast-conserving therapy or mastectomy. Ann Surg Oncol 20:811–818

    Article  PubMed  Google Scholar 

  144. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410

    Article  CAS  PubMed  Google Scholar 

  145. Cortazar P, Zhang L, Untch M et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384:164–172

    Article  PubMed  Google Scholar 

  146. Abdel-Fatah TM, Powe DG, Hodi Z et al (2007) High frequency of coexistence of columnar cell lesions, lobular neoplasia, and low grade ductal carcinoma in situ with invasive tubular carcinoma and invasive lobular carcinoma. Am J Surg Pathol 31:417–426

    Article  PubMed  Google Scholar 

  147. Abdel-Fatah TM, Powe DG, Hodi Z et al (2008) Morphologic and molecular evolutionary pathways of low nuclear grade invasive breast cancers and their putative precursor lesions: further evidence to support the concept of low nuclear grade breast neoplasia family. Am J Surg Pathol 32:513–523

    Article  PubMed  Google Scholar 

  148. Lopez-Garcia MA, Geyer FC, Lacroix-Triki M et al (2010) Breast cancer precursors revisited: molecular features and progression pathways. Histopathology 57:171–192

    Article  PubMed  Google Scholar 

  149. Boecker W, Buerger H (2003) Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept. Cell Prolif 36(Suppl 1):73–84

    Article  PubMed  PubMed Central  Google Scholar 

  150. Krag DN, Anderson SJ, Julian TB et al (2010) Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol 11:927–933

    Article  PubMed  PubMed Central  Google Scholar 

  151. Weaver DL, Ashikaga T, Krag DN et al (2011) Effect of occult metastases on survival in node-negative breast cancer. N Engl J Med 364:412–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Giuliano AE, McCall L, Beitsch P et al (2010) Locoregional recurrence after sentinel lymph node dissection with or without axillary dissection in patients with sentinel lymph node metastases: the American College of Surgeons Oncology Group Z0011 randomized trial. Ann Surg 252:426–432; discussion 32–3

    Article  PubMed  Google Scholar 

  153. Giuliano AE, Ballman K, McCall L et al (2016) Locoregional recurrence after sentinel lymph node dissection with or without axillary dissection in patients with sentinel lymph node metastases: long-term follow-up from the American College of Surgeons Oncology Group (Alliance) ACOSOG Z0011 Randomized Trial. Ann Surg 264:413–420

    Article  PubMed  Google Scholar 

  154. Lyman GH, Giuliano AE, Somerfield MR et al (2005) American Society of Clinical Oncology guideline recommendations for sentinel lymph node biopsy in early-stage breast cancer. J Clin Oncol 23:7703–7720

    Article  PubMed  Google Scholar 

  155. Weaver DL (2010) Pathology evaluation of sentinel lymph nodes in breast cancer: protocol recommendations and rationale. Mod Pathol 23(Suppl 2):S26–S32

    Article  PubMed  Google Scholar 

  156. Stitzenberg KB, Meyer AA, Stern SL et al (2003) Extracapsular extension of the sentinel lymph node metastasis: a predictor of nonsentinel node tumor burden. Ann Surg 237:607–612; discussion 12–3

    PubMed  PubMed Central  Google Scholar 

  157. Neri A, Marrelli D, Roviello F et al (2005) Prognostic value of extracapsular extension of axillary lymph node metastases in T1 to T3 breast cancer. Ann Surg Oncol 12:246–253

    Article  PubMed  Google Scholar 

  158. Gruber G, Cole BF, Castiglione-Gertsch M et al (2008) Extracapsular tumor spread and the risk of local, axillary and supraclavicular recurrence in node-positive, premenopausal patients with breast cancer. Ann Oncol 19:1393–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hetelekidis S, Schnitt SJ, Silver B et al (2000) The significance of extracapsular extension of axillary lymph node metastases in early-stage breast cancer. Int J Radiat Oncol Biol Phys 46:31–34

    Article  CAS  PubMed  Google Scholar 

  160. Tendulkar RD, Rehman S, Shukla ME et al (2012) Impact of postmastectomy radiation on locoregional recurrence in breast cancer patients with 1-3 positive lymph nodes treated with modern systemic therapy. Int J Radiat Oncol Biol Phys 83:e577–e581

    Article  PubMed  Google Scholar 

  161. Gooch J, King TA, Eaton A et al (2014) The extent of extracapsular extension may influence the need for axillary lymph node dissection in patients with T1-T2 breast cancer. Ann Surg Oncol 21:2897–2903

    Article  PubMed  PubMed Central  Google Scholar 

  162. Choi AH, Blount S, Perez MN et al (2015) Size of extranodal extension on sentinel lymph node dissection in the American College of Surgeons Oncology Group Z0011 Trial Era. JAMA Surg 150:1141–1148

    Article  PubMed  Google Scholar 

  163. Mamounas EP, Brown A, Anderson S et al (2005) Sentinel node biopsy after neoadjuvant chemotherapy in breast cancer: results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol 23:2694–2702

    Article  PubMed  Google Scholar 

  164. Kuehn T, Bauerfeind I, Fehm T et al (2013) Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): a prospective, multicentre cohort study. Lancet Oncol 14:609–618

    Article  PubMed  Google Scholar 

  165. Boughey JC, Suman VJ, Mittendorf EA et al (2013) Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: the ACOSOG Z1071 (Alliance) clinical trial. JAMA 310:1455–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mittendorf EA, Caudle AS, Yang W et al (2014) Implementation of the American college of surgeons oncology group z1071 trial data in clinical practice: is there a way forward for sentinel lymph node dissection in clinically node-positive breast cancer patients treated with neoadjuvant chemotherapy? Ann Surg Oncol 21:2468–2473

    Article  PubMed  Google Scholar 

  167. Boileau JF, Poirier B, Basik M et al (2015) Sentinel node biopsy after neoadjuvant chemotherapy in biopsy-proven node-positive breast cancer: the SN FNAC study. J Clin Oncol 33:258–264

    Article  PubMed  Google Scholar 

  168. Allred DC, Anderson SJ, Paik S et al (2012) Adjuvant tamoxifen reduces subsequent breast cancer in women with estrogen receptor-positive ductal carcinoma in situ: a study based on NSABP protocol B-24. J Clin Oncol 30:1268–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hoefnagel LD, van de Vijver MJ, van Slooten HJ et al (2010) Receptor conversion in distant breast cancer metastases. Breast Cancer Res 12:R75

    Article  PubMed  PubMed Central  Google Scholar 

  170. Pekmezci M, Szpaderska A, Osipo C et al (2012) The effect of cold ischemia time and/or formalin fixation on estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 results in breast carcinoma. Pathol Res Int 2012:947041

    Article  Google Scholar 

  171. Portier BP, Wang Z, Downs-Kelly E et al (2013) Delay to formalin fixation ‘cold ischemia time’: effect on ERBB2 detection by in-situ hybridization and immunohistochemistry. Mod Pathol 26:1–9

    Article  CAS  PubMed  Google Scholar 

  172. Zidan A, Christie Brown JS, Peston D et al (1997) Oestrogen and progesterone receptor assessment in core biopsy specimens of breast carcinoma. J Clin Pathol 50:27–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Burge CN, Chang HR, Apple SK (2006) Do the histologic features and results of breast cancer biomarker studies differ between core biopsy and surgical excision specimens? Breast 15:167–172

    Article  PubMed  Google Scholar 

  174. Hodi Z, Chakrabarti J, Lee AH et al (2007) The reliability of assessment of oestrogen receptor expression on needle core biopsy specimens of invasive carcinomas of the breast. J Clin Pathol 60:299–302

    Article  PubMed  Google Scholar 

  175. Wood B, Junckerstorff R, Sterrett G et al (2007) A comparison of immunohistochemical staining for oestrogen receptor, progesterone receptor and HER-2 in breast core biopsies and subsequent excisions. Pathology 39:391–395

    Article  CAS  PubMed  Google Scholar 

  176. Loubeyre P, Bodmer A, Tille JC et al (2013) Concordance between core needle biopsy and surgical excision specimens for tumour hormone receptor profiling according to the 2011 St. Gallen Classification, in clinical practice. Breast J 19:605–610

    Article  PubMed  Google Scholar 

  177. Tsuda H, Kurosumi M, Umemura S et al (2010) HER2 testing on core needle biopsy specimens from primary breast cancers: interobserver reproducibility and concordance with surgically resected specimens. BMC Cancer 10:534

    Article  PubMed  PubMed Central  Google Scholar 

  178. Lee AH, Key HP, Bell JA et al (2012) Concordance of HER2 status assessed on needle core biopsy and surgical specimens of invasive carcinoma of the breast. Histopathology 60:880–884

    Article  PubMed  Google Scholar 

  179. Arnedos M, Nerurkar A, Osin P et al (2009) Discordance between core needle biopsy (CNB) and excisional biopsy (EB) for estrogen receptor (ER), progesterone receptor (PgR) and HER2 status in early breast cancer (EBC). Ann Oncol 20:1948–1952

    Article  CAS  PubMed  Google Scholar 

  180. Rakha EA, Pigera M, Shin SJ et al (2016) HER2 testing in invasive breast cancer: should histological grade, type and oestrogen receptor status influence the decision to repeat testing? Histopathology 69(1):20–24

    Article  PubMed  Google Scholar 

  181. Prendeville S, Feeley L, Bennett MW et al (2016) Reflex repeat HER2 testing of grade 3 breast carcinoma at excision using immunohistochemistry and in situ analysis: frequency of HER2 discordance and utility of core needle biopsy parameters to refine case selection. Am J Clin Pathol 145:75–80

    Article  CAS  PubMed  Google Scholar 

  182. Harvey JM, Clark GM, Osborne CK et al (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17:1474–1481

    Article  CAS  PubMed  Google Scholar 

  183. Allred DC, Harvey JM, Berardo M et al (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11:155–168

    CAS  PubMed  Google Scholar 

  184. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  CAS  PubMed  Google Scholar 

  185. Romond EH, Perez EA, Bryant J et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673–1684

    Article  CAS  PubMed  Google Scholar 

  186. Smith I, Procter M, Gelber RD et al (2007) 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet 369:29–36

    Article  CAS  PubMed  Google Scholar 

  187. Baselga J, Cortes J, Kim SB et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366:109–119

    Article  CAS  PubMed  Google Scholar 

  188. Gianni L, Pienkowski T, Im YH et al (2012) Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 13:25–32

    Article  CAS  PubMed  Google Scholar 

  189. Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743

    Article  CAS  PubMed  Google Scholar 

  190. Verma S, Miles D, Gianni L et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367:1783–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wolff AC, Hammond ME, Schwartz JN et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 131:18–43

    Article  CAS  PubMed  Google Scholar 

  192. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF, American Society of Clinical Oncology, College of American Pathologists (2014) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med 138(2):241–256

    Article  PubMed  Google Scholar 

  193. Bose R, Kavuri SM, Searleman AC et al (2013) Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov 3:224–237

    Article  CAS  PubMed  Google Scholar 

  194. Ross JS, Wang K, Sheehan CE et al (2013) Relapsed classic E-cadherin (CDH1)-mutated invasive lobular breast cancer shows a high frequency of HER2 (ERBB2) gene mutations. Clin Cancer Res 19:2668–2676

    Article  CAS  PubMed  Google Scholar 

  195. de Azambuja E, Cardoso F, de Castro G Jr et al (2007) Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer 96:1504–1513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Stuart-Harris R, Caldas C, Pinder SE et al (2008) Proliferation markers and survival in early breast cancer: a systematic review and meta-analysis of 85 studies in 32,825 patients. Breast 17:323–334

    Article  CAS  PubMed  Google Scholar 

  197. Cheang MC, Chia SK, Voduc D et al (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101:736–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yerushalmi R, Woods R, Ravdin PM et al (2010) Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol 11:174–183

    Article  CAS  PubMed  Google Scholar 

  199. Viale G, Giobbie-Hurder A, Regan MM et al (2008) Prognostic and predictive value of centrally reviewed Ki-67 labeling index in postmenopausal women with endocrine-responsive breast cancer: results from Breast International Group Trial 1-98 comparing adjuvant tamoxifen with letrozole. J Clin Oncol 26:5569–5575

    Article  PubMed  PubMed Central  Google Scholar 

  200. Dowsett M, Nielsen TO, A’Hern R et al (2011) Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer working group. J Natl Cancer Inst 103:1656–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Polley MY, Leung SC, McShane LM et al (2013) An international Ki67 reproducibility study. J Natl Cancer Inst 105:1897–1906

    Article  PubMed  PubMed Central  Google Scholar 

  202. Harris LN, Ismaila N, McShane LM et al (2016) Use of biomarkers to guide decisions on adjuvant systemic therapy for women with early-stage invasive breast cancer: American Society of Clinical Oncology Clinical Practice Guideline Summary. J Oncol Pract 12:384–389

    Article  PubMed  Google Scholar 

  203. Kuenen-Boumeester V, Van der Kwast TH, van Putten WL et al (1992) Immunohistochemical determination of androgen receptors in relation to oestrogen and progesterone receptors in female breast cancer. Int J Cancer 52:581–584

    Article  CAS  PubMed  Google Scholar 

  204. Moinfar F, Okcu M, Tsybrovskyy O et al (2003) Androgen receptors frequently are expressed in breast carcinomas: potential relevance to new therapeutic strategies. Cancer 98:703–711

    Article  CAS  PubMed  Google Scholar 

  205. Riva C, Dainese E, Caprara G et al (2005) Immunohistochemical study of androgen receptors in breast carcinoma. Evidence of their frequent expression in lobular carcinoma. Virchows Arch 447:695–700

    Article  CAS  PubMed  Google Scholar 

  206. Collins LC, Cole KS, Marotti JD et al (2011) Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod Pathol 24:924–931

    Article  PubMed  PubMed Central  Google Scholar 

  207. Niemeier LA, Dabbs DJ, Beriwal S et al (2010) Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod Pathol 23:205–212

    Article  CAS  PubMed  Google Scholar 

  208. Safarpour D, Pakneshan S, Tavassoli FA (2014) Androgen receptor (AR) expression in 400 breast carcinomas: is routine AR assessment justified? Am J Cancer Res 4:353–368

    PubMed  PubMed Central  Google Scholar 

  209. Farmer P, Bonnefoi H, Becette V et al (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24:4660–4671

    Article  CAS  PubMed  Google Scholar 

  210. Lehmann BD, Bauer JA, Chen X et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121:2750–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Gucalp A, Tolaney S, Isakoff SJ et al (2013) Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic Breast Cancer. Clin Cancer Res 19:5505–5512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826

    Article  CAS  PubMed  Google Scholar 

  213. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  214. Parker JS, Mullins M, Cheang MC et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167

    Article  PubMed  PubMed Central  Google Scholar 

  215. Nielsen TO, Parker JS, Leung S et al (2010) A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res 16:5222–5232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Paik S, Tang G, Shak S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24:3726–3734

    Article  CAS  PubMed  Google Scholar 

  217. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Breast Cancer. Version 3 (2015). NCCN.org

    Google Scholar 

  218. Albain KS, Barlow WE, Shak S et al (2010) Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 11:55–65

    Article  CAS  PubMed  Google Scholar 

  219. Sparano JA (2006) TAILORx: trial assigning individualized options for treatment (Rx). Clin Breast Cancer 7:347–350

    Article  PubMed  Google Scholar 

  220. Sparano JA, Gray RJ, Makower DF et al (2015) Prospective validation of a 21-gene expression assay in breast cancer. N Engl J Med 373:2005–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Sparano JA, Gray RJ, Makower DF et al (2018) Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. N Engl J Med 379:111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Hudis CA (2015) Biology before anatomy in early breast cancer—precisely the point. N Engl J Med 373:2079–2080

    Article  PubMed  Google Scholar 

  223. Lo SS, Mumby PB, Norton J et al (2010) Prospective multicenter study of the impact of the 21-gene recurrence score assay on medical oncologist and patient adjuvant breast cancer treatment selection. J Clin Oncol 28:1671–1676

    Article  PubMed  Google Scholar 

  224. Eiermann W, Rezai M, Kummel S et al (2013) The 21-gene recurrence score assay impacts adjuvant therapy recommendations for ER-positive, node-negative and node-positive early breast cancer resulting in a risk-adapted change in chemotherapy use. Ann Oncol 24:618–624

    Article  CAS  PubMed  Google Scholar 

  225. Dinan MA, Mi X, Reed SD et al (2015) Association between use of the 21-gene recurrence score assay and receipt of chemotherapy among Medicare beneficiaries with early-stage breast cancer, 2005-2009. JAMA Oncol 1:1098–1109

    Article  PubMed  Google Scholar 

  226. Carlson JJ, Roth JA (2013) The impact of the Oncotype Dx breast cancer assay in clinical practice: a systematic review and meta-analysis. Breast Cancer Res Treat 141:13–22

    Article  PubMed  PubMed Central  Google Scholar 

  227. Jasem J, Amini A, Rabinovitch R et al (2016) 21-gene recurrence score assay as a predictor of adjuvant chemotherapy Administration for Early-Stage Breast Cancer: an analysis of use, therapeutic implications, and disparity profile. J Clin Oncol 34(17):1995–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edi Brogi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wen, H.Y., Brogi, E. (2019). Breast Cancer Pathology. In: Urban, C., Rietjens, M., El-Tamer, M., Sacchini, V.S. (eds) Oncoplastic and Reconstructive Breast Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-62927-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62927-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62925-4

  • Online ISBN: 978-3-319-62927-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics