Skip to main content

Ohsawa-Takegoshi Extension Theorem for Compact Kähler Manifolds and Applications

  • Chapter
  • First Online:
Complex and Symplectic Geometry

Part of the book series: Springer INdAM Series ((SINDAMS,volume 21))

Abstract

Our main goal in this article is to prove an extension theorem for sections of the canonical bundle of a weakly pseudoconvex Kähler manifold with values in a line bundle endowed with a possibly singular metric. We also give some applications of our result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    If X is compact, such approximation always exists, cf. [ 9 , Chapter  13 ].

  2. 2.

    \(\mathcal{I}(\varphi \vert _{Z})\) is the multiplier ideal sheaf on Z associated to the weight φ | Z .

  3. 3.

    Yi [22] proved it in a more general setting.

  4. 4.

    We refer to [13, 5.1] for a detailed calculus.

References

  1. B. Berndtsson, Integral formulas and the Ohsawa-Takegoshi extension theorem. Sci. China Ser. A 48(Suppl.), 61–73 (2005)

    Google Scholar 

  2. B. Berndtsson, L. Lempert, A proof of the Ohsawa–Takegoshi theorem with sharp estimates. J. Math. Soc. Jpn. 68(4), 1461–1472 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Berndtsson, M. Păun, Bergman kernels and the pseudoeffectivity of relative canonical bundles. Duke Math. J. 145(2), 341–378 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Berndtsson, M. Păun, Bergman kernels and subadjunction. arXiv: 1002.4145v1

    Google Scholar 

  5. J. Bertin, J.-P. Demailly, L. Illusie, C. Peters, Introduction to Hodge Theory. SMF/AMS Texts and Monographs, vol. 8 (2002)

    Google Scholar 

  6. Z. Błocki, Suita conjecture and the Ohsawa-Takegoshi extension theorem. Invent. Math. 193(1), 149–158 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. B.-Y. Chen, A simple proof of the Ohsawa-Takegoshi extension theorem. ArXiv e-prints 1105.2430

    Google Scholar 

  8. J.-P. Demailly, Multiplier ideal sheaves and analytic methods in algebraic geometry, in School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000). ICTP Lecture Notes, vol. 6 (ICTP, Trieste, 2001), pp. 1–148

    Google Scholar 

  9. J.-P. Demailly, Analytic Methods in Algebraic Geometry. Surveys of Modern Mathematics, vol. 1 (International Press, Boston, 2012)

    Google Scholar 

  10. J.-P. Demailly, Extension of holomorphic functions defined on non reduced analytic subvarieties. arXiv:1510.05230v1. Advanced Lectures in Mathematics Volume 35.1, the legacy of Bernhard Riemann after one hundred and fifty years, 2015

    Google Scholar 

  11. J.-P. Demailly, T. Peternell, A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds. J. Differ. Geom. 63(2), 231–277 (2003)

    Article  MATH  Google Scholar 

  12. H. Flenner, Ein Kriterium für die Offenheit der Versalität. Math. Z. 178(4), 449–473 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Q. Guan, X. Zhou, A solution of L 2 extension problem with optimal estimate and applications. Ann. Math. 181(3), 1139–1208 (2015). arXiv:1310.7169

    Google Scholar 

  14. Q. Guan, X. Zhou, A proof of Demailly’s strong openness conjecture. Ann. Math. 182(2), 605–616 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. P.H. Hiêp, The weighted log canonical threshold. C.R. Math. 352(4), 283–288 (2014)

    Google Scholar 

  16. Y. Kawamata, Pluricanonical systems on minimal algebraic varieties. Invent. Math. 79(3), 567–588 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Manivel, Un théorème de prolongement L 2 de sections holomorphes d’un fibré hermitien. Math. Z. 212(1), 107–122 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Ohsawa, On the extension of L 2 holomorphic functions. II. Publ. Res. Inst. Math. Sci. 24(2), 265–275 (1988)

    Article  MATH  Google Scholar 

  19. T. Ohsawa, K. Takegoshi, On the extension of L 2 holomorphic functions. Math. Z. 195(2), 197–204 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Y.-T. Siu, Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, in Complex Geometry: Collection of Papers Dedicated to Hans Grauert (Springer, Berlin, 2002), pp. 223–277

    MATH  Google Scholar 

  21. H. Tsuji, Extension of log pluricanonical forms from subvarieties. arXiv 0709.2710

    Google Scholar 

  22. L. Yi, An Ohsawa-Takegoshi theorem on compact Kähler manifolds. Sci. China Math. 57(1), 9–30 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Zhu, Q. Guan, X. Zhou, On the Ohsawa–Takegoshi L2 extension theorem and the Bochner–Kodaira identity with non-smooth twist factor. J. Math. Pures Appl. 97(6), 579–601 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank H. Tsuji who brought me attention to this problem during the Hayama conference 2013. I would also like to thank M. Păun for pointing out several interesting applications, and a serious mistake in the first version of the article. I would also like to thank J.-P. Demailly and X. Zhou for helpful discussions. Last but not least, I would like to thank the anonymous referee for excellent suggestions about this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyan Cao .

Editor information

Editors and Affiliations

Appendix

Appendix

For the reader’s convenience, we give the proof of (26) and (27), which is a rather standard estimate (cf. [9, Prop. 12.4, Remark 12.5], [11] or [22]). Set g: = g m , η: = η ε , B: = Bε, k and δ: = δ k for simplicity. Let Y k be a subvariety of X such that φ k is smooth outside Y k . Then there exists a complete Kähler metric ω1 on X∖Y k . Set ω s : = ω + 1. Then ω s is also a complete Kähler metric on X∖Y k for every s > 0.

We apply the twist L 2-estimate (cf. [9, 12.A, 12.B]) for the line bundle \((L,\widetilde{h}_{k})\) on (X∖Y k , ω s ). Thanks to (24) and [13, Lemma 4.1], for every smooth (n, 1)-form v with compact support, we have

$$ { \vert \langle g,v\rangle _{\omega _{s}}\vert ^{2} }$$
(45)
$$ {\leq (\int _{X\setminus Y _{k}}\langle (B + \frac{2C \cdot m} {k} )^{-1}g,g\rangle dV _{\omega _{ s}}) \cdot (\|(\eta +\lambda )^{\frac{1} {2} }D^{{\prime\prime}{\ast}}v\|_{\omega _{ s}}^{2} + \frac{2C \cdot m} {k} \int _{X\setminus Y _{k}}\langle v,v\rangle dV _{\omega _{s}})}$$

Set \(H_{1}:=\| \cdot \|_{L^{2}}\), where the L 2-norm \(\|\cdot \|_{L^{2}}\) is defined with respect to the metrics ω s and \((L,\widetilde{h}_{k})\). Let H2 be a Hilbert space where the norm is defined by

$$ {\|\,f\|_{H_{2}}^{2}:= \frac{2C \cdot m} {k} \int _{X\setminus Y _{k}}\vert \,f\vert _{\widetilde{h}_{k}}^{2}dV _{\omega _{ s}}.}$$

By (45) and the Hahn-Banach theorem, we can construct a continuous linear map (cf. for example [9, 5.A])

$$ {H_{1} \oplus H_{2} \rightarrow \mathbb{C},}$$

which is an extension of the application

$$ {((\eta +\lambda )^{\frac{1} {2} }D^{{\prime\prime}{\ast}}v,v) \rightarrow \langle g,v\rangle _{\omega _{ s}}.}$$

Therefore, there exist f and h such that

$$ {\langle g,v\rangle _{\omega _{s}} =\langle f,(\eta +\lambda )^{\frac{1} {2} }D^{{\prime\prime}{\ast}}v\rangle _{\omega _{ s}} + \frac{2C \cdot m} {k} \langle h,v\rangle _{\omega _{s}}}$$

and

$$ {\|\,f\|_{\omega _{s}}^{2} + \frac{2C \cdot m} {k} \|h\|_{\omega _{s}}^{2} \leq \int _{ X}(\langle B + \frac{2C \cdot m} {k} )^{-1}g,g\rangle dV _{\omega _{ s}}}$$

Let \(\beta:= 2C(\frac{m} {k} )^{\frac{1} {2} } \cdot h\) and \(\gamma:= (\eta +\lambda )^{\frac{1} {2} }f\). Then

$$ {g = D^{{\prime\prime}}\gamma + (\frac{m} {k} )^{\frac{1} {2} }\beta }$$

and

$$ {\| \frac{\gamma } {(\lambda +\eta )^{\frac{1} {2} }} \|_{(X\setminus Y _{k},\omega _{s})}^{2} + \frac{1} {2C}\|\beta \|_{(X\setminus Y _{k},\omega _{s})}^{2} \leq \int _{ X\setminus Y _{k}}\langle (B + \frac{2C \cdot m} {k} )^{-1}g,g\rangle dV _{\omega _{ s}}}$$

Then (26) and (27) are proved by letting s → 0+.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, a part of Springer Nature

About this chapter

Cite this chapter

Cao, J. (2017). Ohsawa-Takegoshi Extension Theorem for Compact Kähler Manifolds and Applications. In: Angella, D., Medori, C., Tomassini, A. (eds) Complex and Symplectic Geometry. Springer INdAM Series, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-62914-8_2

Download citation

Publish with us

Policies and ethics