Advertisement

Generalized Connected Sum Constructions for Resolutions of Extremal and Kcsc Orbifolds

  • Claudio Arezzo
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 21)

Abstract

In this note we review recent progresses on the existence problem of extremal and Kähler constant scalar curvature metrics on complex manifolds. The content of this note is an expanded version of author’s talk “Kahler constant scalar curvature metrics on blow ups and resolutions of singularities” given at the INdAM Meeting Complex and Symplectic Geometry, Cortona, June 12–18, 2016.

References

  1. 1.
    V. Apostolov, Y. Rollin, ALE scalar-flat Kähler metrics on non-compact weighted projective spaces. Math. Ann. 367, 1685–1726 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    C. Arezzo, Geometric constructions of extremal metrics on complex manifolds, in Trends in Contemporary Mathematics, ed. by V. Ancona, E. Strickland. Springer INdAM Series, vol. 8 (Springer, Berlin, 2014), pp. 229–247Google Scholar
  3. 3.
    C. Arezzo, F. Pacard, Blowing up and desingularizing Kähler orbifolds with constant scalar curvature. Acta Math. 196(2), 179–228 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    C. Arezzo, F. Pacard, Blowing up Kähler manifolds with constant scalar curvature. II Ann. Math. 170(2), 685–738 (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    C. Arezzo, C. Spotti, On cscK resolutions of conically singular cscK varieties. J. Funct. Anal. 271(2), 474–494 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    C. Arezzo, C. Spotti, On the existence of scalar flat Kähler metrics on ALE spaces (in preparation)Google Scholar
  7. 7.
    C. Arezzo, F. Pacard, M. Singer, Extremal metrics on blowups. Duke Math. J. 157(1), 1–51 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    C. Arezzo, R. Lena, L. Mazzieri, On the resolution of extremal and constant scalar curvature Kähler orbifolds. Int. Math. Res. Not. 21, 6415–6452 (2016)CrossRefGoogle Scholar
  9. 9.
    C. Arezzo, A. Della Vedova, R. Lena, L. Mazzieri, On the Kummer construction for Kcsc metrics (in preparation)Google Scholar
  10. 10.
    C. Arezzo, A. Della Vedova, L. Mazzieri, Kcsc metrics and K-stability of resolutions of isolated quotient singularities (in preparation)Google Scholar
  11. 11.
    E. Calabi, Extremal Kähler metrics II, in Differential Geometry and Its Complex Analysis, ed. by I. Chavel, H.M. Farkas (Springer, Berlin, 1985)Google Scholar
  12. 12.
    D. Calderbank, M. Singer, Einstein metrics and complex singularities. Invent. Math. 156(2), 405–443 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Y.-M. Chan, Desingularizations of Calabi-Yau 3-folds with a conical singularity. Q. J. Math. 57, 151–181 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    R.J. Conlon, H.-J. Hein, Asymptotically conical Calabi-Yau manifolds, I’. Duke Math. J. 162(15), 2855–2902 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. Futaki, Kähler-Einstein Metrics and Integral Invariants. Lecture Notes in Mathematics, vol. 1314 (Springer, Berlin, 1988)Google Scholar
  16. 16.
    R. Goto, Calabi-Yau structures and Einstein-Sasakian structures on crepant resolutions of isolated singularities. J. Math. Soc. Jpn. 64, 1005–1052 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    J. Han, J. Viaclovsky, Deformation theory of scalar-flat Kähler ALE surfaces (2016). arXiv:1605.05267Google Scholar
  18. 18.
    H.-J. Hein, C. LeBrun, Mass in Kähler geometry. Commun. Math. Phys. 347(1), 183–221Google Scholar
  19. 19.
    H.-J. Hein, S. Sun, Calabi-Yau manifolds with isolated conical singularities (2016). arXiv:1607.02940Google Scholar
  20. 20.
    D. Joyce, Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs (Oxford University Press, Oxford, 2000). MR 1787733 (2001k:53093)Google Scholar
  21. 21.
    P. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients. J. Differ. Geom. 29(3), 665–683 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    P. Kronheimer, Explicit self-dual metrics on CP2 ## CP2. J. Differ. Geom. 34(1), 223–253 (1991). MR 1114461 (92g:53040)Google Scholar
  23. 23.
    M. Lock, J. Viaclocsky, A smörgasbord of scalar-flat Kaehler ALE surfaces. Crelle’s J. (2016). doi:10.1515/crelle-2016-0007,Google Scholar
  24. 24.
    Y. Rollin, M. Singer, Constant scalar curvature Kähler surfaces and parabolic polystability. J. Geom. Anal. 19(1), 107–136 (2009). MR 2465299 (2010b:32037)Google Scholar
  25. 25.
    G. Szèkelyhidi, On blowing up extremal Kähler manifolds. Duke Math. J. 161(8), 1411–1453 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    G. Szèkelyhidi, Extremal Kähler metrics, in Proceedings of International Congress of Mathematicians (2014)Google Scholar
  27. 27.
    G. Szèkelyhidi, On blowing up extremal Kähler manifolds II. Invent. Math. 200(3), 925–977 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    C. van Coevering, Ricci-flat Kähler metrics on crepant resolutions of Kähler cones. Math. Ann. 347(3), 581–611 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, a part of Springer Nature 2017

Authors and Affiliations

  • Claudio Arezzo
    • 1
  1. 1.ICTPTriesteItaly

Personalised recommendations