Skip to main content

Determination of Constitutive Properties in Inverse Problem Using Airy Stress Function

  • Conference paper
  • First Online:
Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 8

Abstract

A new inverse problem formulation is developed using the Airy stress function. Inverse methods are used to determine the constitutive properties of a graphite/epoxy laminated composite loaded vertically by processing measured values of v-displacement component with an Airy stress function in complex variables. Displacements are recorded using digital image correlation. The traction-free conditions on the symmetrically located sided notches are satisfied analytically using conformal mappings and analytic continuation. The traction-free on the vertical free edge and a symmetrical condition on horizontal line of symmetry are imposed discretely. The primary advantage of this new formulation is the direct use of displacement data, eliminating the need for numerical differentiation when strain data is required. The inverse method algorithm determined the constitutive properties with errors range from 2% to 10%. Selection of Airy coefficients, test geometry configuration and comparison with other inverse methods will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alshaya, A.A.: Experimental, analytical and numerical analyses of orthotropic materials and biomechanics application. PhD thesis, University of Wisconsin-Madison (2017)

    Google Scholar 

  2. Alshaya, A., Rowlands, R.: Experimental stress analysis of a notched finite composite tensile plate. Compos. Sci. Technol. 144, 89–99 (2017.) ISSN 0266-3538, http://dx.doi.org/10.1016/j.compscitech.2017.03.007. (http://www.sciencedirect.com/science/article/pii/S0266353816312143)

    Article  Google Scholar 

  3. Ju, S.H., Rowlands, R.E.: Thermoelastic determination of KI and KII in an orthotropic graphite–epoxy composite. J. Compos. Mater. 37(22), 2011–2025 (2003)

    Article  Google Scholar 

  4. Ju, S.H., Rowlands, R.E.: Mixed-mode thermoelastic fracture analysis of orthtropic composites. Int. J. Fract. 120(4), 601–621 (2003)

    Article  Google Scholar 

  5. Lin, S.T., Rowlands, R.E.: Thermoelastic stress analysis of orthotropic composites. Exp. Mech. 35(3), 257–265 (1995)

    Article  Google Scholar 

  6. Alshaya, A., Shuai, X., Rowlands, R.: Thermoelastic stress analysis of a finite orthotropic composite containing an elliptical hole. Exp. Mech. 56(8), 1373–1384 (2016)

    Article  Google Scholar 

  7. Rhee, J., Rowlands, R.E.: Thermoelastic-numerical hybrid analysis of holes and cracks in composites. Exp. Mech. 39(4), 349–355 (1999)

    Article  Google Scholar 

  8. Hawong, J.S., Lin, C.H., Lin, S.T., Rhee, J., Rowlands, R.E.: A hybrid method to determine individual stresses in orthotropic composites using only measured isochromatic data. J. Compos. Mater. 29(18), 2366–2387 (1995)

    Article  Google Scholar 

  9. Baek, T.H., Rowlands, R.E.: Experimental determination of stress concentrations in orthotropic composites. J. Strain Anal. Eng. Des. 34(2), 69–81 (1999)

    Article  Google Scholar 

  10. Baek, T., Rowlands, R.: Hybrid stress analysis of perforated composites using strain gages. Exp. Mech. 41(2), 195–203 (2001)

    Article  Google Scholar 

  11. Avril, S., Pierron, F.: General framework for the identification of constitutive parameters from full-field measurements in linear elasticity. Int. J. Solids Struct. 44(14–15), 4978–5002 (2007)

    Article  MATH  Google Scholar 

  12. Le Magorou, L., Bos, F., Rouger, F.: Identification of constitutive laws for wood-based panels by means of an inverse method. Compos. Sci. Technol. 62(4), 591–596 (2002)

    Article  Google Scholar 

  13. Molimard, J., Le Riche, R., Vautrin, A., Lee, J.-R.: Identification of the four orthotropic plate stiffnesses using a single open-hole tensile test. Exp. Mech. 45(5), 404–411 (2005)

    Article  Google Scholar 

  14. Genovese, K., Lamberti, L., Pappalettere, C.: Improved global–local simulated annealing formulation for solving non-smooth engineering optimization problems. Int. J. Solids Struct. 42(1), 203–237 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Considine, J.M., Vahey, D.W., Matthys, D., Rowlands, R.E., Turner, K.T.: An inverse method for analyzing defects in heterogeneous materials. In: Proulx, T. (ed.) Application of Imaging Techniques to Mechanics of Materials and Structures, Volume 4: Proceedings of the 2010 Annual Conference on Experimental and Applied Mechanics, pp. 339–346. Springer New York, New York (2013)

    Chapter  Google Scholar 

  16. Lekhnitskii, S.G.: Anisotropic Plates. Gordon & Breach Scientific Publishers, New York (1968)

    Google Scholar 

  17. Bisshopp, F.: Numerical conformal mapping and analytic continuation. Q. Appl. Math. 41, 125–142 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Challis, N.V., Burley, D.M.: A numerical method for conformal mapping. IMA J. Numer. Anal. 2(2), 169–181 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, San Francisco (1963)

    MATH  Google Scholar 

  20. Lin, S.T., Rowlands, R.E.: Hybrid stress analysis. Opt. Lasers Eng. 32(3), 257–298 (1999)

    Article  Google Scholar 

  21. Muskhelishvili, N.: Some Basic Problems of the Mathematical Theory of Elasticity. Springer, Leyden (1977)

    Book  Google Scholar 

  22. Savin, G.N.: Stress Concentration Around Holes. Pergamon Press 1961

    Google Scholar 

  23. Bowie, O.L., Freese, C.E.: Central crack in plane orthotropic rectangular sheet. Int. J. Fract. Mech. 8(1), 49–57 (1972)

    Article  Google Scholar 

  24. Gerhardt, T.D.: A hybrid/finite element approach for stress analysis of notched anisotropic materials. J. Appl. Mech. 51(4), 804–810 (1984)

    Article  MATH  Google Scholar 

  25. Huang, Y.-M.: Determination of individual stresses from thermoelastically measured trace of stress tensor. PhD thesis, University of Wisconsin-Madison

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alshaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Alshaya, A., Considine, J.M., Rowlands, R. (2018). Determination of Constitutive Properties in Inverse Problem Using Airy Stress Function. In: Baldi, A., Considine, J., Quinn, S., Balandraud, X. (eds) Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-62899-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62899-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62898-1

  • Online ISBN: 978-3-319-62899-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics