Advertisement

Convolution and Unfolding

  • Luca Lista
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 941)

Abstract

This section will discuss two related problems: how to take into account realistic detector response, like resolution, efficiency, and background, into a probability model, and how to remove those experimental effects from an observed distribution, in order to recover the original distribution. This second problem is known as unfolding.

References

  1. 1.
    Adye, T.: Corrected error calculation for iterative Bayesian unfolding. http://hepunx.rl.ac.uk/~adye/software/unfold/bayes_errors.pdf (2011)
  2. 2.
    Adye, T., Claridge, R., Tackmann, K., Wilson, F.: RooUnfold: ROOT unfolding framework. http://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html (2012)
  3. 3.
    Bracewell, R.: The Fourier Transform and Its Applications, 3rd. edn. McGraw-Hill, New York (1999)MATHGoogle Scholar
  4. 4.
    Brun, R., Rademakers, F.: Root—an object oriented dat analysis framework. Proceedings AIHENP96 Workshop, Lausanne (1996). Nucl. Instrum. Methods Phys. Res. A 389, 81–86 (1997) http://root.cern.ch/ Google Scholar
  5. 5.
    Choudalakis, G.: Fully Bayesian unfolding. arXiv:1201.4612 (2012)Google Scholar
  6. 6.
    Cowan, G.: Statistical Data Analysis. Clarendon Press, Oxford (1998)Google Scholar
  7. 7.
    D’Agostini, G.: A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods Phys. Res. A 362, 487–498 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    D’Agostini, G.: Improved iterative Bayesian unfolding. arXiv:1010.0632 (2010)Google Scholar
  9. 9.
    Hansen, P.C.: The L-curve and Its use in the numerical treatment of inverse problems. In: Johnston, P. (ed.) Computational Inverse Problems in Electrocardiology. WIT Press, Southampton (2000)Google Scholar
  10. 10.
    Hoecker, A., Kartvelishvili, V.: SVD approach to data unfolding. Nucl. Instrum. Methods A 372, 469–481 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    Kondor, A.: Method of converging weights—an iterative procedure for solving Fredholm’s integral equations of the first kind. Nucl. Instrum. Methods Phys. Res. 216, 177 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    Kuusela, M., Stark, P.B.: Shape-constrained uncertainty quantification in unfolding steeply falling elementary particle spectra. arXiv:1512.00905 (2015)Google Scholar
  13. 13.
    Müulthei, H.N., Schorr, B.: On an iterative method for the unfolding of spectra. Nucl. Instrum. Methods Phys. Res. A 257, 371 (1983)CrossRefGoogle Scholar
  14. 14.
    Müulthei, H.N., Schorr, B.: On an iterative method for a class of integral equations of the first kind. Math. Methods Appl. Sci. 9, 137 (1987)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Phillips, D. L.: A technique for the numerical solution of certain integral equations of the first kind. J. ACM 9, 84 (1962)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Schmitt, S.: TUnfold: an algorithm for correcting migration effects in high energy physics. J. Instrum. 7, T10003 (2012)CrossRefGoogle Scholar
  17. 17.
    Shepp, L., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1, 113–122 (1982)CrossRefGoogle Scholar
  18. 18.
    Tikhonov, A. N.: On the solution of improperly posed problems and the method of regularization. Sov. Math. 5, 1035 (1963)MATHGoogle Scholar
  19. 19.
    Tikhonov, A.N., Arsenin. V.Y.: Solutions of Ill-Posed Problems. John Wiley, New York (1977)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Luca Lista
    • 1
  1. 1.INFN Sezione di NapoliNapoliItaly

Personalised recommendations