Advertisement

Random Numbers and Monte Carlo Methods

  • Luca Lista
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 941)

Abstract

Many computer application, ranging from simulations to video games and 3D-graphics, take advantage of computer-generated numeric sequences that have properties very similar to truly random variables. Sequences generated by computer algorithms through mathematical operations are not really random, having no intrinsic unpredictability, and are necessarily deterministic and reproducible. Indeed, the possibility to reproduce exactly the same sequence of computer-generated numbers with a computer algorithm is often a good feature for many application.

References

  1. 1.
    May, R.: Simple mathematical models with very complicated dynamics. Nature 621, 459 (1976)ADSCrossRefMATHGoogle Scholar
  2. 2.
  3. 3.
    T.O. Group: The single UNIX®;  specification, Version 2. http://www.unix.org (1997)
  4. 4.
    T.G. project: GNU operating system–GSL–GNU scientific library. http://www.gnu.org/software/gsl/ (1996–2011)
  5. 5.
    Lüscher, M.: A portable high-quality random number generator for lattice field theory simulations. Comput. Phys. Commun. 79, 100–110 (1994)ADSCrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    James, F.: Ranlux: a fortran implementation of the high-quality pseudorandom number generator of Lüscher. Comput. Phys. Commun. 79, 111–114 (1994)ADSCrossRefMATHGoogle Scholar
  7. 7.
    L’Ecuyer, P.: Maximally equidistributed combined Tausworthe generators. Math. Comput. 65, 203–213 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Matsumoto, M., Nishimura, T.: Mersenne twistor: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. 8, 3–30 (1998)CrossRefMATHGoogle Scholar
  9. 9.
    Marsaglia, G., Tsang, W.W., Wang, J.: Fast generation of discrete random variables. J. Stat. Softw. 11, 3 (2004)Google Scholar
  10. 10.
    Box, G.E.P., Muller, M.: A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611 (1958)CrossRefMATHGoogle Scholar
  11. 11.
    Marsglia, G., Tsang, W.: The Ziggurat method for generating random variables. J. Stat. Softw. 5, 8 (2000)Google Scholar
  12. 12.
    Metropolis, N., et al.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)ADSCrossRefGoogle Scholar
  13. 13.
    Hastings, W.: Monte Carlo sampling methods using Markov chains and their application. Biometrika 57, 97–109 (1970)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Caldwell, A., Kollar, D., Kröninger, K.: BAT – The Bayesian Analysis Toolkit. Comput. Phys. Commun. 180, 2197–2209 (2009). https://wwwold.mppmu.mpg.de/bat/ ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Luca Lista
    • 1
  1. 1.INFN Sezione di NapoliNapoliItaly

Personalised recommendations