Skip to main content

Effect of Strain Rate and Interface Chemistry on Failure in Energetic Materials

Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

We study the failure at interfaces between Hydroxyl-terminated polybutadiene (HTPB)-Ammonium Perchlorate (AP) based energetic material. In this work, interface mechanical strength of a set of HTPB-AP interfaces is characterized using nano-scale impact experiments at strain rates up to 100 s−1. A power law viscoplastic constitutive model was fitted to experimental stress-strain-strain rate data in order to obtain constitutive behavior of interfaces, particle, and matrix. A mechanical Raman spectroscopy is used to analyze the effect of binding agent at different temperature. A tensile fracture experiment combined with In-situ Mechanical Raman Spectroscopy was used to obtain fracture properties. Stress maps are obtained near the interface using In-situ Mechanical Raman Spectroscopy to analyze the changes in the stress distribution around interfaces for different loads till failure. Cohesive zone model parameters were obtained from the consideration of local stress during failure and the cohesive energy required for delamination of AP from HTPB matrix. Effect of binding agent on the interface strength is found to be quite significant. The cohesive zone parameters and the viscoplastic model obtained from the experiment were then used in the cohesive finite element method to simulate the dynamic crack propagation as well as the delamination. Results show that interfacial properties are affected by the rate of loading and are also dependent upon the binding agent.

Keywords

  • Energetic material
  • Stress/strain relationship
  • HTPB
  • AP
  • NRS

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-62831-8_2
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-62831-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4

References

  1. Gallier, S., Hiernard, F.: Microstructure of composite propellants using simulated packings and X-ray tomography. J. Propuls. Power. 24(1), 154–157 (2008)

    CrossRef  Google Scholar 

  2. Palmer, S.J.P., Field, J.E., Huntley, J.M.: Deformation, strengths and strains to failure of polymer bonded explosives. Proc. R. Soc. A: Math. Phys. Eng. Sci. 440, 399–419 (1993)

    CrossRef  Google Scholar 

  3. Stacer, R.G., Hubner, C., Husband, M.: Binder/filler interaction and the nonlinear behavior of highly-filled elastomers. Rubber Chem. Technol. 63(4), 488–502 (1990)

    CrossRef  Google Scholar 

  4. Stacer, R.G., Husband, M.: Small deformation viscoelastic response of gum and highly filled elastomers. Rheol. Acta. 29, 152–162 (1990)

    CrossRef  Google Scholar 

  5. Fleming, K.A., et al.: The influence of formulation variables on the growth of reaction in plastic bonded explosives. In: Proceedings of the 8th International Detonation Symposium, Albuquerque. Naval Surface Weapons Center (1985)

    Google Scholar 

  6. Kimura, E., Oyumi, Y.: Shock instability test for azide polymer propellants. J. Energ. Mater. 16(2–3), 173–185 (1998)

    Google Scholar 

  7. Rae, P.J., et al.: Quasi-static studies of the deformation and failure of β-HMX based polymer bonded explosives. Proc. R. Soc. A: Math. Phys. Eng. Sci. 458, 743–762 (2002)

    CrossRef  Google Scholar 

  8. Yeager, J.D.: Microstructural Characterization of Simulated Plastic Bonded Explosives, in Mechanical and Materials Engineering. Washington State University, Washington (2011)

    Google Scholar 

  9. Wang, Z., et al.: Tensile mechanical properties and constitutive model for HTPB propellant at low temperature and high strain rate. J. Appl. Polym. Sci. 132, 42104 (2015)

    Google Scholar 

  10. Renganathan, K., et al.: Tensile fracture of HTPB based propellant specimens. Mater. Sci. Technol. 18(11), 1408–1412 (2013)

    CrossRef  Google Scholar 

  11. Xu, F., Aravas, N., Sofronis, P.: Constitutive modeling of solid propellant materials with evolving microstructural damage. J. Mech. Phys. Solids. 56(5), 2050–2073 (2008)

    CrossRef  MATH  Google Scholar 

  12. Kalaycioglu, B., Dirikolu, M.H., Çelik, V.: An elasto-viscoplastic analysis of direct extrusion of a double base solid propellant. Adv. Eng. Softw. 41(9), 1110–1114 (2010)

    CrossRef  MATH  Google Scholar 

  13. Trumel, H., et al.: A constitutive model for the dynamic and high-pressure behaviour of a propellant-like material: part II: model development and applications. Int. J. Numer. Anal. Methods Geomech. 25(6), 581–603 (2001)

    CrossRef  Google Scholar 

  14. Trumel, H., et al.: A constitutive model for the dynamic and high-pressure behaviour of a propellant-like material: part I: experimental background and general structure of the model. Int. J. Numer. Anal. Methods Geomech. 25(6), 551–579 (2001)

    CrossRef  MATH  Google Scholar 

  15. Trumel, H., Fanget, A., Deragon, A.: A finite strain elastic-plastic model for the quasi-static behaviour of particulate composites. Int. J. Eng. Sci. 34(6), 677–698 (1996)

    CrossRef  MATH  Google Scholar 

  16. Tsai, J., Sun, C.T.: Constitutive model for high strain rate response of polymeric composites. Compos. Sci. Technol. 62, 1289–1297 (2002)

    CrossRef  Google Scholar 

  17. Prakash, C., et al.: Strain rate dependent failure of interfaces examined via nanoimpact experiments. In: Antoun, B. et al. (eds.) Challenges in Mechanics of Time Dependent Materials, vol. 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham, pp. 93--102 (2017)

    Google Scholar 

  18. Verma, D., Tomar, V.: An investigation into environment dependent nanomechanical properties of shallow water shrimp (Pandalus platyceros) exoskeleton. Mater. Sci. Eng. C Mater. Biol. Appl. 44, 371–379 (2014)

    CrossRef  Google Scholar 

  19. Verma, D., Tomar, V.: A comparison of nanoindentation creep deformation characteristics of hydrothermal vent shrimp (Rimicaris exoculata) and shallow water shrimp (Pandalus platyceros) exoskeletons. J. Mater. Res. 30(08), 1110–1120 (2015)

    CrossRef  Google Scholar 

  20. Verma, D., Tomar, V.: An investigation into mechanical strength of exoskeleton of hydrothermal vent shrimp (Rimicaris exoculata) and shallow water shrimp (Pandalus platyceros) at elevated temperatures. Mater. Sci. Eng. C Mater. Biol. Appl. 49, 243–250 (2015)

    CrossRef  Google Scholar 

  21. Verma, D., Qu, T., Tomar, V.: Scale dependence of the mechanical properties and microstructure of crustaceans thin films as biomimetic materials. JOM. 67(4), 858–866 (2015)

    CrossRef  Google Scholar 

  22. Prakash, C., et al.: An analysis of the influence of grain boundary strength on microstructure dependent fracture in polycrystalline tungsten. Int. J. Fract. 199(1), 1–20 (2016)

    CrossRef  Google Scholar 

  23. Fish, J., et al.: AL 6061-T6-Elastomer impact simulation. Technical Report. Rensselaer Polytechnic Institute (2005)

    Google Scholar 

  24. Hui, T., Oskay, C.: Computational modeling of polyurea-coated composites subjected to blast loads. J. Compos. Mater. 46(18), 2167–2178 (2012)

    CrossRef  Google Scholar 

  25. Tomar, V.: Insights into the effects of tensile and compressive loadings on microstructure dependent fracture of trabecular bone. Eng. Fract. Mech. 76(7), 884–897 (2009)

    CrossRef  Google Scholar 

  26. Ortiz, M., Pandolfi, A.: Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int. J. Numer. Methods Eng. 44(9), 1267–1282 (1999)

    CrossRef  MATH  Google Scholar 

  27. Tvergaard, V.: Cohesive zone representations of failure between elastic or rigid solids and ductile solids. Eng. Fract. Mech. 70(14), 1859–1868 (2003)

    CrossRef  Google Scholar 

  28. Camacho, G.T., Ortiz, M.: Computaional modeling of impact damage in brittle materials. Int. J. Solids Struct. 33(20–22), 2899–2938 (1996)

    CrossRef  MATH  Google Scholar 

  29. Zhai, J., Tomar, V., Zhou, M.: Micromechanical simulation of dynamic fracture using the cohesive finite element method. J. Eng. Mater. Technol. 126(2), 179 (2004)

    CrossRef  Google Scholar 

  30. Tomar, V., Zhai, J., Zhou, M.: Bounds for element size in a variable stiffness cohesive finite element model. Int. J. Numer. Methods Eng. 61(11), 1894–1920 (2004)

    CrossRef  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by US-AFoSR Grant FA9550-15-1-0202 (Program Manager Dr. Martin Schmidt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Tomar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Prakash, C., Emre Gunduz, I., Tomar, V. (2018). Effect of Strain Rate and Interface Chemistry on Failure in Energetic Materials. In: Carroll, J., Xia, S., Beese, A., Berke, R., Pataky, G. (eds) Fracture, Fatigue, Failure and Damage Evolution, Volume 7. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-62831-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62831-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62830-1

  • Online ISBN: 978-3-319-62831-8

  • eBook Packages: EngineeringEngineering (R0)