Skip to main content

The Onset of the Fetal Respiratory Rhythm: An Emergent Property Triggered by Chemosensory Drive?

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1015))

Abstract

The mechanisms responsible for the onset of respiratory activity during fetal life are unknown. The onset of respiratory rhythm may be a consequence of the genetic program of each of the constituents of the respiratory network, so they start to interact and generate respiratory cycles when reaching a certain degree of maturation. Alternatively, generation of cycles might require the contribution of recently formed sensory inputs that will trigger oscillatory activity in the nascent respiratory neural network. If this hypothesis is true, then sensory input to the respiratory generator must be already formed and become functional before the onset of fetal respiration. In this review, we evaluate the timing of the onset of the respiratory rhythm in comparison to the appearance of receptors, neurotransmitter machinery, and afferent projections provided by two central chemoreceptive nuclei, the raphe and locus coeruleus nuclei.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

5-HT:

5-hydroxytryptamine (serotonin)

5-HT1AR:

Serotonin receptor 1A

5-HT2AR:

Serotonin receptor 2A

5-HT2BR:

Serotonin receptor 2B

5-HT4R:

Serotonin receptor 4

5-HT7R:

Serotonin receptor 7

5-HTergic:

Serotonergic

6-OH DA:

6-hydroxy dopamine

8-OH DPAT:

8-hydroxy-diproplaminotetralin

A5:

Noradrenergic neurons in pons region near A6

A6:

Noradrenergic neurons in locus coeruleus

ACh:

Acetylcholine

aCSF:

Artificial cerebrospinal fluid

AMPA:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

Ascl1 :

Achaete-scute complex-like 1

Atoh1 :

Protein atonal homolog 1

BMP:

Bone morphogenetic protein

CNO:

Clozapine-N-oxide

CNS:

Central nervous system

CO2 :

Carbon dioxide

DBH-SAP:

β-hydroxilase-saporin

Dbx1 :

Developing brain homeobox 1

DRC:

Dorsal ventral respiratory column

DRG:

Dorsal root ganglion

E:

Embryonic day

Egr2:

Early growth response 2

ePF:

Embryonic parafacial oscillator

GABA:

γ-aminobutyric acid

Gata2:

GATA binding protein 2

Gata3:

GATA binding protein 3

GFP:

Green fluorescent protein

H+ :

Protons

Hoxa2:

Homeobox protein Hox-2A

I CAN :

Calcium-activated non-specific cationic current

I h :

Hyperpolarization activated current

I NaP :

Persistent Na+ current

Lbx1:

Ladybird homeobox 1

LC:

Locus Coeruleus

LF:

Low frequency

Lmx1b :

LIM homeobox transcription factor 1β

Lmx1b f/f/p :

Lmx1b conditional knockout

MAO-A:

Monoamine oxidase A

Mash1:

Mammalian achaete scute homolog-1

NA:

Noradrenaline

NAergic:

Noradrenergic

NALCN:

Non-selective cationic cannel

NK1R:

Neurokinin 1 receptor

NTS:

Nucleus tractus solitaries

Pet-1 :

Pheochromocytoma 12 ETS factor-1

Pet-1 −/− :

Pheochromocytoma 12 ETS factor-1 knockout mice

Phox2a:

Paired-like homeobox 2a

Phox2b :

Paired-like homeobox 2b

preBötC:

Prebötzinger complex

RN:

Raphe nucleus

RPG:

Respiratory pattern generator

RTN/pFRG:

Retrotrapezoide nucleus/parafacial respiratory group

SERT:

Serotonin transporter

SNpc :

Substantia nigra pars compacta

SP:

Substance P

SSTR:

Somatostatin receptor

Tg8 :

Monoamine oxidase A deficient mice

TH:

Tyrosine hydroxylase

TpOH:

Tryptophan hydroxylase

TRH:

Thyrotropin-releasing hormone

VRC:

Ventral respiratory column

References

  • Abadie V, Champagnat J, Fortin G (2000) Branchiomotor activities in mouse embryo. Neuroreport 11(1):141–145

    Article  CAS  PubMed  Google Scholar 

  • Abbott SB, Stornetta RL, Fortuna MG, Depuy SD, West GH, Harris TE, Guyenet PG (2009) Photostimulation of retrotrapezoid nucleus phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats. J Neurosci 29(18):5806–5819. doi:10.1523/JNEUROSCI.1106-09.2009. 29/18/5806 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abreu-Villaca Y, Filgueiras CC, Manhaes AC (2011) Developmental aspects of the cholinergic system. Behav Brain Res 221(2):367–378. doi:10.1016/j.bbr.2009.12.049. S0166-4328(10)00017-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Alenina N, Bashammakh S, Bader M (2006) Specification and differentiation of serotonergic neurons. Stem Cell Rev 2(1):5–10. doi:10.1007/s12015-006-0002-2

    Article  CAS  PubMed  Google Scholar 

  • Al-Zubaidy ZA, Erickson RL, Greer JJ (1996) Serotonergic and noradrenergic effects on respiratory neural discharge in the medullary slice preparation of neonatal rats. Pflugers Arch 431(6):942–949

    Article  CAS  PubMed  Google Scholar 

  • Anderson TM, Garcia AJ, Baertsch NB, Pollak J, Bloom JC, Wei AD, Rai KG, Ramirez J-M (2016) A novel excitatory network for the control of breathing. Nature 536(7614):76–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arata A, Onimaru H, Homma I (1998) The adrenergic modulation of firings of respiratory rhythm-generating neurons in medulla-spinal cord preparation from newborn rat. Exp Brain Res 119(4):399–408

    Article  CAS  PubMed  Google Scholar 

  • Aroca P, Lorente-Canovas B, Mateos FR, Puelles L (2006) Locus coeruleus neurons originate in alar rhombomere 1 and migrate into the basal plate: studies in chick and mouse embryos. J Comp Neurol 496(6):802–818. doi:10.1002/cne.20957

    Article  PubMed  Google Scholar 

  • Ballantyne D, Scheid P (2001) Central chemosensitivity of respiration: a brief overview. Respir Physiol 129(1–2):5–12. S0034568701002973 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ballion B, Branchereau P, Chapron J, Viala D (2002) Ontogeny of descending serotonergic innervation and evidence for intraspinal 5-HT neurons in the mouse spinal cord. Brain Res Dev Brain Res 137(1):81–88. S0165380602004145 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ben-Mabrouk F, Tryba AK (2010) Substance P modulation of TRPC3/7 channels improves respiratory rhythm regularity and ICAN-dependent pacemaker activity. Eur J Neurosci 31(7):1219–1232. doi:10.1111/j.1460-9568.2010.07156.x. EJN7156 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernard DG, Li A, Nattie EE (1996) Evidence for central chemoreception in the midline raphe. J Appl Physiol 80(1):108–115

    CAS  PubMed  Google Scholar 

  • Biancardi V, Bicego KC, Almeida MC, Gargaglioni LH (2008) Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflugers Arch 455(6):1119–1128. doi:10.1007/s00424-007-0338-8

    Article  CAS  PubMed  Google Scholar 

  • Bianchi AL, Denavit-Saubie M, Champagnat J (1995) Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol Rev 75(1):1–45

    CAS  PubMed  Google Scholar 

  • Bosma MM (2010) Timing and mechanism of a window of spontaneous activity in embryonic mouse hindbrain development. Ann N Y Acad Sci 1198:182–191. doi:10.1111/j.1749-6632.2009.05423.x

    Article  PubMed  Google Scholar 

  • Bou-Flores C, Lajard AM, Monteau R, De Maeyer E, Seif I, Lanoir J, Hilaire G (2000) Abnormal phrenic motoneuron activity and morphology in neonatal monoamine oxidase A-deficient transgenic mice: possible role of a serotonin excess. J Neurosci 20(12):4646–4656. 20/12/4646 [pii]

    CAS  PubMed  Google Scholar 

  • Bouvier J, Thoby-Brisson M, Renier N, Dubreuil V, Ericson J, Champagnat J, Pierani A, Chedotal A, Fortin G (2010) Hindbrain interneurons and axon guidance signaling critical for breathing. Nat Neurosci 13(9):1066–1074. doi:10.1038/nn.2622. nn.2622 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Branchereau P, Morin D, Bonnot A, Ballion B, Chapron J, Viala D (2000) Development of lumbar rhythmic networks: from embryonic to neonate locomotor-like patterns in the mouse. Brain Res Bull 53(5):711–718. S0361-9230(00)00403-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Bruning G, Liangos O, Baumgarten HG (1997) Prenatal development of the serotonin transporter in mouse brain. Cell Tissue Res 289(2):211–221

    Article  CAS  PubMed  Google Scholar 

  • Butera RJ Jr, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Botzinger complex. I Bursting pacemaker neurons. J Neurophysiol 82(1):382–397

    PubMed  Google Scholar 

  • de Carvalho D, Bicego KC, de Castro OW, da Silva GS, Garcia-Cairasco N, Gargaglioni LH (2010) Role of neurokinin-1 expressing neurons in the locus coeruleus on ventilatory and cardiovascular responses to hypercapnia. Respir Physiol Neurobiol 172(1–2):24–31. doi:10.1016/j.resp.2010.04.016

    Article  PubMed  CAS  Google Scholar 

  • Cermak JM, Holler T, Jackson DA, Blusztajn JK (1998) Prenatal availability of choline modifies development of the hippocampal cholinergic system. FASEB J 12(3):349–357

    CAS  PubMed  Google Scholar 

  • Chambers D, Wilson LJ, Alfonsi F, Hunter E, Saxena U, Blanc E, Lumsden A (2009) Rhombomere-specific analysis reveals the repertoire of genetic cues expressed across the developing hindbrain. Neural Dev 4:6. doi:10.1186/1749-8104-4-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Champagnat J, Fortin G (1997) Primordial respiratory-like rhythm generation in the vertebrate embryo. Trends Neurosci 20(3):119–124

    Article  CAS  PubMed  Google Scholar 

  • Champagnat J, Morin-Surun MP, Fortin G, Thoby-Brisson M (2009) Developmental basis of the rostro-caudal organization of the brainstem respiratory rhythm generator. Philos Trans R Soc Lond Ser B Biol Sci 364(1529):2469–2476. doi:10.1098/rstb.2009.0090

    Article  CAS  Google Scholar 

  • Champagnat J, Morin-Surun MP, Bouvier J, Thoby-Brisson M, Fortin G (2011) Prenatal development of central rhythm generation. Respir Physiol Neurobiol 178(1):146–155. doi:10.1016/j.resp.2011.04.013

    Article  PubMed  Google Scholar 

  • Chatonnet F, Wrobel LJ, Mezieres V, Pasqualetti M, Ducret S, Taillebourg E, Charnay P, Rijli FM, Champagnat J (2007) Distinct roles of Hoxa2 and Krox20 in the development of rhythmic neural networks controlling inspiratory depth, respiratory frequency, and jaw opening. Neural Dev 2:19. doi:10.1186/1749-8104-2-19. 1749-8104-2-19 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen BS, Peng H, Wu SN (2009) Dexmedetomidine, an alpha2-adrenergic agonist, inhibits neuronal delayed-rectifier potassium current and sodium current. Br J Anaesth 103(2):244–254. doi:10.1093/bja/aep107. aep107 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Chen CL, Luo P, Tan M, Qiu M, Johnson R, Ma Q (2003) Lmx1b, Pet-1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J Neurosci 23(31):9961–9967. 23/31/9961 [pii]

    CAS  PubMed  Google Scholar 

  • Coates EL, Li A, Nattie EE (1993) Widespread sites of brain stem ventilatory chemoreceptors. J Appl Physiol 75(1):5–14

    CAS  PubMed  Google Scholar 

  • Corcoran AE, Milsom WK (2009) Maturational changes in pontine and medullary alpha-adrenoceptor influences on respiratory rhythm generation in neonatal rats. Respir Physiol Neurobiol 165(2–3):195–201. doi:10.1016/j.resp.2008.11.009. S1569-9048(08)00324-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Corcoran AE, Richerson GB, Harris MB (2013) Serotonergic mechanisms are necessary for central respiratory chemoresponsiveness in situ. Respir Physiol Neurobiol 186(2):214–220. doi:10.1016/j.resp.2013.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craven SE, Lim KC, Ye W, Engel JD, de Sauvage F, Rosenthal A (2004) Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development 131(5):1165–1173. doi:10.1242/dev.01024. 131/5/1165[pii]

    Article  CAS  PubMed  Google Scholar 

  • Cummings KJ, Li A, Deneris ES, Nattie EE (2010) Bradycardia in serotonin-deficient pet-1-/- mice: influence of respiratory dysfunction and hyperthermia over the first 2 postnatal weeks. Am J Physiol Regul Integr Comp Physiol 298(5):R1333–R1342. doi:10.1152/ajpregu.00110.2010. 298/5/R1333 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Negro CA, Koshiya N, Butera RJ Jr, Smith JC (2002a) Persistent sodium current, membrane properties and bursting behavior of pre-botzinger complex inspiratory neurons in vitro. J Neurophysiol 88(5):2242–2250. doi:10.1152/jn.00081.2002

    Article  PubMed  Google Scholar 

  • Del Negro CA, Morgado-Valle C, Feldman JL (2002b) Respiratory rhythm: an emergent network property? Neuron 34(5):821–830. S0896627302007122 [pii]

    Article  PubMed  Google Scholar 

  • Del Negro CA, Morgado-Valle C, Hayes JA, Mackay DD, Pace RW, Crowder EA, Feldman JL (2005) Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J Neurosci 25(2):446–453. doi:10.1523/JNEUROSCI.2237-04.2005. 25/2/446 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Del Negro CA, Hayes JA, Pace RW, Brush BR, Teruyama R, Feldman JL (2010) Synaptically activated burst-generating conductances may underlie a group-pacemaker mechanism for respiratory rhythm generation in mammals. Prog Brain Res 187:111–136. doi:10.1016/B978-0-444-53613-6.00008-3. B978-0-444-53613-6.00008-3 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Pasquale E, Morin D, Monteau R, Hilaire G (1992) Serotonergic modulation of the respiratory rhythm generator at birth: an in vitro study in the rat. Neurosci Lett 143(1–2):91–95

    Article  PubMed  Google Scholar 

  • Ding YQ, Marklund U, Yuan W, Yin J, Wegman L, Ericson J, Deneris E, Johnson RL, Chen ZF (2003) Lmx1b is essential for the development of serotonergic neurons. Nat Neurosci 6(9):933–938. doi:10.1038/nn1104. nn1104[pii]

    Article  CAS  PubMed  Google Scholar 

  • Doi A, Ramirez JM (2008) Neuromodulation and the orchestration of the respiratory rhythm. Respir Physiol Neurobiol 164(1-2):96–104. doi:10.1016/j.resp.2008.06.007. S1569-9048(08)00166-3[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Doorninck JH, van Der Wees J, Karis A, Goedknegt E, Engel JD, Coesmans M, Rutteman M, Grosveld F, De Zeeuw CI (1999) GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J Neurosci 19(12):RC12

    PubMed  Google Scholar 

  • Dreshaj IA, Haxhiu MA, Martin RJ (1998) Role of the medullary raphe nuclei in the respiratory response to CO2. Respir Physiol 111(1):15–23

    Article  CAS  PubMed  Google Scholar 

  • Dubreuil V, Ramanantsoa N, Trochet D, Vaubourg V, Amiel J, Gallego J, Brunet JF, Goridis C (2008) A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proc Natl Acad Sci U S A 105(3):1067–1072. doi:10.1073/pnas.0709115105. 0709115105 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elam M, Yao T, Thoren P, Svensson TH (1981) Hypercapnia and hypoxia: chemoreceptor-mediated control of locus coeruleus neurons and splanchnic, sympathetic nerves. Brain Res 222(2):373–381

    Article  CAS  PubMed  Google Scholar 

  • Erickson JT, Shafer G, Rossetti MD, Wilson CG, Deneris ES (2007) Arrest of 5HT neuron differentiation delays respiratory maturation and impairs neonatal homeostatic responses to environmental challenges. Respir Physiol Neurobiol 159(1):85–101. doi:10.1016/j.resp.2007.06.002. S1569-9048(07)00173-5 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Erlichman JS, Li A, Nattie EE (1998) Ventilatory effects of glial dysfunction in a rat brain stem chemoreceptor region. J Appl Physiol (1985) 85(5):1599–1604

    CAS  Google Scholar 

  • Errchidi S, Hilaire G, Monteau R (1990) Permanent release of noradrenaline modulates respiratory frequency in the newborn rat: an in vitro study. J Physiol 429:497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Errchidi S, Monteau R, Hilaire G (1991) Noradrenergic modulation of the medullary respiratory rhythm generator in the newborn rat: an in vitro study. J Physiol 443:477–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eugenin J, Nicholls JG (1997) Chemosensory and cholinergic stimulation of fictive respiration in isolated CNS of neonatal opossum. J Physiol Lond 501(Pt 2):425–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eugenin J, von Bernhardi R, Muller KJ, Llona I (2006) Development and pH sensitivity of the respiratory rhythm of fetal mice in vitro. Neuroscience 141(1):223–231. doi:10.1016/j.neuroscience.2006.03.046. S0306-4522(06)00420-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Feldman SR (2007) Looking beyond the borders of our specialty: the 2006 Clarence S. Livingood MD lecture. Dermatol Online J 13(4):20

    PubMed  Google Scholar 

  • Feldman JL, Cleland C (1982) Possible roles of pacemaker neurons in mammalian respiratory rhythmogenesis. In: Carpenter D (ed) Cellular pacemarkers. Wiley, New York, pp 104–128

    Google Scholar 

  • Feldman JL, Mitchell GS, Nattie EE (2003) Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci 26:239–266. doi:10.1146/annurev.neuro.26.041002.131103. 041002.131103[pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman JL, Del Negro CA, Gray PA (2013) Understanding the rhythm of breathing: so near, yet so far. Annu Rev Physiol 75:423–452. doi:10.1146/annurev-physiol-040510-130049

    Article  CAS  PubMed  Google Scholar 

  • Filosa JA, Dean JB, Putnam RW (2002) Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. J Physiol 541(Pt 2):493–509. PHY_14142 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortin G, Thoby-Brisson M (2009) Embryonic emergence of the respiratory rhythm generator. Respir Physiol Neurobiol 168(1–2):86–91. doi:10.1016/j.resp.2009.06.013. S1569-9048(09)00179-7 [pii]

    Article  PubMed  Google Scholar 

  • Fortuna MG, Stornetta RL, West GH, Guyenet PG (2009) Activation of the retrotrapezoid nucleus by posterior hypothalamic stimulation. J Physiol 587(Pt 21):5121–5138. doi:10.1113/jphysiol.2009.176875. jphysiol.2009.176875 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster GA, Schultzberg M, Goldstein M, Hokfelt T (1985) Ontogeny of phenylethanolamine N-methyltransferase- and tyrosine hydroxylase-like immunoreactivity in presumptive adrenaline neurones of the foetal rat central nervous system. J Comp Neurol 236(3):348–381. doi:10.1002/cne.902360306

    Article  CAS  PubMed  Google Scholar 

  • Fujii M, Arata A (2010) Adrenaline modulates on the respiratory network development. Adv Exp Med Biol 669:25–28. doi:10.1007/978-1-4419-5692-7_5

    Article  CAS  PubMed  Google Scholar 

  • Funk GD, Smith JC, Feldman JL (1993) Generation and transmission of respiratory oscillations in medullary slices: role of excitatory amino acids. J Neurophysiol 70(4):1497–1515

    CAS  PubMed  Google Scholar 

  • Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. 3. The monoamine nerve terminal. Z Zellforsch Mikrosk Anat 65:573–596

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Lillesaar C (2012) Probing the diversity of serotonin neurons. Philos Trans R Soc Lond Ser B Biol Sci 367(1601):2382–2394. doi:10.1098/rstb.2011.0378

    Article  CAS  Google Scholar 

  • Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4(12):1002–1012. doi:10.1038/nrn1256

    Article  CAS  PubMed  Google Scholar 

  • Goridis C, Rohrer H (2002) Specification of catecholaminergic and serotonergic neurons. Nat Rev Neurosci 3(7):531–541. doi:10.1038/nrn871

    Article  CAS  PubMed  Google Scholar 

  • Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K, Kasparov S (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329(5991):571–575. doi:10.1126/science.1190721. science.1190721 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray PA (2008) Transcription factors and the genetic organization of brain stem respiratory neurons. J Appl Physiol (1985) 104(5):1513–1521. doi:10.1152/japplphysiol.01383.2007. 01383.2007 [pii]

    Article  Google Scholar 

  • Gray PA, Hayes JA, Ling GY, Llona I, Tupal S, Picardo MC, Ross SE, Hirata T, Corbin JG, Eugenin J, Del Negro CA (2010) Developmental origin of preBotzinger complex respiratory neurons. J Neurosci 30(44):14883–14895. doi:10.1523/JNEUROSCI.4031-10.2010. 30/44/14883 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer JJ, Allan DW, Martin-Caraballo M, Lemke RP (1999) An overview of phrenic nerve and diaphragm muscle development in the perinatal rat. J Appl Physiol 86(3):779–786

    CAS  PubMed  Google Scholar 

  • Guyenet PG, Bayliss DA, Stornetta RL, Fortuna MG, Abbott SB, DePuy SD (2009) Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity. Respir Physiol Neurobiol 168(1–2):59–68. doi:10.1016/j.resp.2009.02.001. S1569-9048(09)00029-9 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Hendricks T, Francis N, Fyodorov D, Deneris ES (1999) The ETS domain factor pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J Neurosci 19(23):10348–10356

    CAS  PubMed  Google Scholar 

  • Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B, Silver J, Weeber EJ, Sweatt JD, Deneris ES (2003) Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37(2):233–247

    Article  CAS  PubMed  Google Scholar 

  • Hilaire G (2006) Endogenous noradrenaline affects the maturation and function of the respiratory network: possible implication for SIDS. Auton Neurosci 126-127:320–331. doi:10.1016/j.autneu.2006.01.021. S1566-0702(06)00048-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hilaire G, Monteau R, Errchidi S (1989) Possible modulation of the medullary respiratory rhythm generator by the noradrenergic A5 area: an in vitro study in the newborn rat. Brain Res 485(2):325–332. 0006-8993(89)90577-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hilaire G, Viemari JC, Coulon P, Simonneau M, Bevengut M (2004) Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents. Respir Physiol Neurobiol 143(2–3):187–197

    Article  CAS  PubMed  Google Scholar 

  • Hillion J, Milne-Edwards JB, Catelon J, de Vitry F, Gros F, Hamon M (1993) Prenatal developmental expression of rat brain 5-HT1A receptor gene followed by PCR. Biochem Biophys Res Commun 191(3):991–997

    Article  CAS  PubMed  Google Scholar 

  • Hirsch MR, Tiveron MC, Guillemot F, Brunet JF, Goridis C (1998) Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125(4):599–608

    CAS  PubMed  Google Scholar 

  • Hodges MR, Richerson GB (2008) Contributions of 5-HT neurons to respiratory control: neuromodulatory and trophic effects. Respir Physiol Neurobiol 164(1–2):222–232. doi:10.1016/j.resp.2008.05.014. S1569-9048(08)00139-0 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges MR, Klum L, Leekley T, Brozoski DT, Bastasic J, Davis S, Wenninger JM, Feroah TR, Pan LG, Forster HV (2004a) Effects on breathing in awake and sleeping goats of focal acidosis in the medullary raphe. J Appl Physiol (1985) 96(5):1815–1824. doi:10.1152/japplphysiol.00992.2003

    Article  CAS  Google Scholar 

  • Hodges MR, Opansky C, Qian B, Davis S, Bonis J, Bastasic J, Leekley T, Pan LG, Forster HV (2004b) Transient attenuation of CO2 sensitivity after neurotoxic lesions in the medullary raphe area of awake goats. J Appl Physiol 97(6):2236–2247

    Article  CAS  PubMed  Google Scholar 

  • Hodges MR, Tattersall GJ, Harris MB, McEvoy SD, Richerson DN, Deneris ES, Johnson RL, Chen ZF, Richerson GB (2008) Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J Neurosci 28(10):2495–2505. doi:10.1523/JNEUROSCI.4729-07.2008. 28/10/2495 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Hodges MR, Wehner M, Aungst J, Smith JC, Richerson GB (2009) Transgenic mice lacking serotonin neurons have severe apnea and high mortality during development. J Neurosci 29(33):10341–10349. doi:10.1523/JNEUROSCI.1963-09.2009. 29/33/10341 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges MR, Best S, Richerson GB (2011) Altered ventilatory and thermoregulatory control in male and female adult Pet-1 null mice. Respir Physiol Neurobiol 177(2):133–140. doi:10.1016/j.resp.2011.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtman JR Jr (1988) Immunohistochemical localization of serotonin- and substance P-containing fibers around respiratory muscle motoneurons in the nucleus ambiguus of the cat. Neuroscience 26(1):169–178

    Article  PubMed  Google Scholar 

  • Hunt PN, McCabe AK, Bosma MM (2005) Midline serotonergic neurones contribute to widespread synchronized activity in embryonic mouse hindbrain. J Physiol 566(Pt 3):807–819. doi:10.1113/jphysiol.2005.089581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Infante CD, von Bernhardi R, Rovegno M, Llona I, Eugenin JL (2003) Respiratory responses to pH in the absence of pontine and dorsal medullary areas in the newborn mouse in vitro. Brain Res 984(1–2):198–205

    Article  CAS  PubMed  Google Scholar 

  • Jacquin TD, Borday V, Schneider-Maunoury S, Topilko P, Ghilini G, Kato F, Charnay P, Champagnat J (1996) Reorganization of pontine rhythmogenic neuronal networks in Krox-20 knockout mice. Neuron 17(4):747–758

    Article  CAS  PubMed  Google Scholar 

  • Janczewski WA, Feldman JL (2006) Distinct rhythm generators for inspiration and expiration in the juvenile rat. J Physiol 570(Pt 2):407–420. doi:10.1113/jphysiol.2005.098848. jphysiol.2005.098848 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Jean-Charles V, Gerard H (2002) Noradrenergic receptors and in vitro respiratory rhythm: possible interspecies differences between mouse and rat neonates. Neurosci Lett 324(2):149–153

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Haxhiu MA, Richerson GB (2008) GFP-expressing locus ceruleus neurons from Prp57 transgenic mice exhibit CO2/H+ responses in primary cell culture. J Appl Physiol (1985) 105(4):1301–1311. doi:10.1152/japplphysiol.90414.2008

    Article  CAS  Google Scholar 

  • Kanamaru M, Homma I (2007) Compensatory airway dilation and additive ventilatory augmentation mediated by dorsomedial medullary 5-hydroxytryptamine 2 receptor activity and hypercapnia. Am J Physiol Regul Integr Comp Physiol 293(2):R854–R860. doi:10.1152/ajpregu.00829.2006. 00829.2006 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kodama D, Togari A (2010) Modulation of potassium channels via the alpha1B-adrenergic receptor in human osteoblasts. Neurosci Lett 485(2):102–106. doi:10.1016/j.neulet.2010.08.073. S0304-3940(10)01153-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Koizumi H, Smith JC (2008) Persistent Na+ and K+-dominated leak currents contribute to respiratory rhythm generation in the pre-Botzinger complex in vitro. J Neurosci 28(7):1773–1785. doi:10.1523/JNEUROSCI.3916-07.2008. 28/7/1773 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Kubli FW, Hon EH, Khazin AF, Takemura H (1969) Observations on heart rate and pH in the human fetus during labor. Am J Obstet Gynecol 104(8):1190–1206

    Article  CAS  PubMed  Google Scholar 

  • Lalley PM, Bischoff AM, Richter DW (1994) 5-HT-1A receptor-mediated modulation of medullary expiratory neurones in the cat. J Physiol 476(1):117–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lauder JM, Bloom FE (1975) Ontogeny of monoamine neurons in the locus coeruleus, raphe nuclei and substantia nigra of the rat. II. Synaptogenesis. J Comp Neurol 163(3):251–264. doi:10.1002/cne.901630302

    Article  CAS  PubMed  Google Scholar 

  • Li C, Horn JP (2008) Differential inhibition of Ca2+ channels by alpha2-adrenoceptors in three functional subclasses of rat sympathetic neurons. J Neurophysiol 100(6):3055–3063. doi:10.1152/jn.90590.2008. 90590.2008 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li A, Nattie E (2006) Catecholamine neurones in rats modulate sleep, breathing, central chemoreception and breathing variability. J Physiol 570(Pt 2):385–396

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Morris KF, Baekey DM, Shannon R, Lindsey BG (1999) Responses of simultaneously recorded respiratory-related medullary neurons to stimulation of multiple sensory modalities. J Neurophysiol 82(1):176–187

    CAS  PubMed  Google Scholar 

  • Lu B, Su Y, Das S, Wang H, Wang Y, Liu J, Ren D (2009) Peptide neurotransmitters activate a cation channel complex of NALCN and UNC-80. Nature 457(7230):741–744. doi:10.1038/nature07579. nature07579 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Zhang Q, Wang H, Wang Y, Nakayama M, Ren D (2010) Extracellular calcium controls background current and neuronal excitability via an UNC79-UNC80-NALCN cation channel complex. Neuron 68(3):488–499. doi:10.1016/j.neuron.2010.09.014. S0896-6273(10)00756-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumsden A (1999) Closing in on rhombomere boundaries. Nat Cell Biol 1:E83–E85

    Article  CAS  PubMed  Google Scholar 

  • Manzke T, Guenther U, Ponimaskin EG, Haller M, Dutschmann M, Schwarzacher S, Richter DW (2003) 5-HT4(a) receptors avert opioid-induced breathing depression without loss of analgesia. Science 301(5630):226–229. doi:10.1126/science.1084674. 301/5630/226 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Manzke T, Preusse S, Hulsmann S, Richter DW (2008) Developmental changes of serotonin 4(a) receptor expression in the rat pre-Botzinger complex. J Comp Neurol 506(5):775–790. doi:10.1002/cne.21581

    Article  CAS  PubMed  Google Scholar 

  • Meillerais A, Champagnat J, Morin-Surun MP (2010) Extracellular calcium induces quiescence of the low-frequency embryonic motor rhythm in the mouse isolated brainstem. J Neurosci Res 88(16):3555–3565. doi:10.1002/jnr.22518

    Article  CAS  PubMed  Google Scholar 

  • Messier ML, Li A, Nattie EE (2002) Muscimol inhibition of medullary raphe neurons decreases the CO2 response and alters sleep in newborn piglets. Respir Physiol Neurobiol 133(3):197–214

    Article  CAS  PubMed  Google Scholar 

  • Messier ML, Li A, Nattie EE (2004) Inhibition of medullary raphe serotonergic neurons has age-dependent effects on the CO2 response in newborn piglets. J Appl Physiol 96(5):1909–1919

    Article  PubMed  Google Scholar 

  • Meyer LC, Fuller A, Mitchell D (2006) Zacopride and 8-OH-DPAT reverse opioid-induced respiratory depression and hypoxia but not catatonic immobilization in goats. Am J Physiol Regul Integr Comp Physiol 290(2):R405–R413. doi:10.1152/ajpregu.00440.2005. 00440.2005 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Morgado-Valle C, Baca SM, Feldman JL (2010) Glycinergic pacemaker neurons in preBotzinger complex of neonatal mouse. J Neurosci 30(10):3634–3639. doi:10.1523/JNEUROSCI.3040-09.2010. 30/10/3634 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin X, Cremer H, Hirsch MR, Kapur RP, Goridis C, Brunet JF (1997) Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18(3):411–423

    Article  CAS  PubMed  Google Scholar 

  • Mulkey DK, Talley EM, Stornetta RL, Siegel AR, West GH, Chen X, Sen N, Mistry AM, Guyenet PG, Bayliss DA (2007) TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity. J Neurosci 27(51):14049–14058. doi:10.1523/JNEUROSCI.4254-07.2007. 27/51/14049 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Nattie E (1999) CO2, brainstem chemoreceptors and breathing. Prog Neurobiol 59(4):299–331

    Article  CAS  PubMed  Google Scholar 

  • Nattie EE, Li A (2001) CO2 dialysis in the medullary raphe of the rat increases ventilation in sleep. J Appl Physiol 90(4):1247–1257

    CAS  PubMed  Google Scholar 

  • Nattie E, Li A (2012) Central chemoreceptors: locations and functions. Compr Physiol 2(1):221–254. doi:10.1002/cphy.c100083

    PubMed  PubMed Central  Google Scholar 

  • Nattie EE, Li A, Richerson GB, Lappi DA (2004) Medullary serotonergic neurones and adjacent neurones that express neurokinin-1 receptors are both involved in chemoreception in vivo. J Physiol 556(Pt 1):235–253. doi:10.1113/jphysiol.2003.059766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niebert M, Vogelgesang S, Koch UR, Bischoff AM, Kron M, Bock N, Manzke T (2011) Expression and function of serotonin 2A and 2B receptors in the mammalian respiratory network. PLoS One 6(7):e21395. doi:10.1371/journal.pone.0021395. PONE-D-11-03965 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson L, Seiger A (1972) Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entwicklungsgesch 137(3):301–316

    Article  CAS  PubMed  Google Scholar 

  • Onimaru H, Homma I (2003) A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23(4):1478–1486. 23/4/1478 [pii]

    CAS  PubMed  Google Scholar 

  • Oyamada Y, Ballantyne D, Muckenhoff K, Scheid P (1998) Respiration-modulated membrane potential and chemosensitivity of locus coeruleus neurones in the in vitro brainstem-spinal cord of the neonatal rat. J Physiol 513(Pt 2):381–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pace RW, Mackay DD, Feldman JL, Del Negro CA (2007) Inspiratory bursts in the preBotzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. J Physiol 582(Pt 1):113–125. doi:10.1113/jphysiol.2007.133660. jphysiol.2007.133660 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliardini S, Ren J, Greer JJ (2003) Ontogeny of the pre-Botzinger complex in perinatal rats. J Neurosci 23(29):9575–9584. 23/29/9575 [pii]

    CAS  PubMed  Google Scholar 

  • Pagliardini S, Ren J, Gray PA, Vandunk C, Gross M, Goulding M, Greer JJ (2008) Central respiratory rhythmogenesis is abnormal in lbx1- deficient mice. J Neurosci 28(43):11030–11041. doi:10.1523/JNEUROSCI.1648-08.2008. 28/43/11030 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Pattyn A, Goridis C, Brunet JF (2000) Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol Cell Neurosci 15(3):235–243. doi:10.1006/mcne.1999.0826. S1044-7431(99)90826-6[pii]

    Article  CAS  PubMed  Google Scholar 

  • Pattyn A, Vallstedt A, Dias JM, Samad OA, Krumlauf R, Rijli FM, Brunet JF, Ericson J (2003) Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev 17(6):729–737. doi:10.1101/gad.255803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena F, Parkis MA, Tryba AK, Ramirez JM (2004) Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 43(1):105–117. doi:10.1016/j.neuron.2004.06.023. S0896627304003927[pii]

    Article  CAS  PubMed  Google Scholar 

  • Pilowsky PM, Jiang C, Lipski J (1990) An intracellular study of respiratory neurons in the rostral ventrolateral medulla of the rat and their relationship to catecholamine-containing neurons. J Comp Neurol 301(4):604–617. doi:10.1002/cne.903010409

    Article  CAS  PubMed  Google Scholar 

  • Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7(12):1345–1352. doi:10.1038/nn1352. nn1352 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Fritzsch B, Shirasawa S, Chen CL, Choi Y, Ma Q (2001) Formation of brainstem (nor)adrenergic centers and first-order relay visceral sensory neurons is dependent on homeodomain protein Rnx/Tlx3. Genes Dev 15(19):2533–2545. doi:10.1101/gad.921501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanantsoa N, Hirsch MR, Thoby-Brisson M, Dubreuil V, Bouvier J, Ruffault PL, Matrot B, Fortin G, Brunet JF, Gallego J, Goridis C (2011) Breathing without CO(2) chemosensitivity in conditional Phox2b mutants. J Neurosci 31(36):12880–12888. doi:10.1523/JNEUROSCI.1721-11.2011. 31/36/12880 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ramirez JM, Koch H, Garcia AJ 3rd, Doi A, Zanella S (2011) The role of spiking and bursting pacemakers in the neuronal control of breathing. J Biol Phys 37(3):241–261. doi:10.1007/s10867-011-9214-z. 9214 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramirez JM, Doi A, Garcia AJ 3rd, Elsen FP, Koch H, Wei AD (2012) The cellular building blocks of breathing. Compr Physiol 2(4):2683–2731. doi:10.1002/cphy.c110033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ray RS, Corcoran AE, Brust RD, Kim JC, Richerson GB, Nattie E, Dymecki SM (2011) Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 333(6042):637–642. doi:10.1126/science.1205295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray RS, Corcoran AE, Brust RD, Soriano LP, Nattie EE, Dymecki SM (2013) Egr2-neurons control the adult respiratory response to hypercapnia. Brain Res 1511:115–125. doi:10.1016/j.brainres.2012.12.017

    Article  CAS  PubMed  Google Scholar 

  • Rekling JC, Feldman JL (1998) PreBotzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annu Rev Physiol 60:385–405. doi:10.1146/annurev.physiol.60.1.385

    Article  CAS  PubMed  Google Scholar 

  • Rekling JC, Shao XM, Feldman JL (2000) Electrical coupling and excitatory synaptic transmission between rhythmogenic respiratory neurons in the preBotzinger complex. J Neurosci 20(23):RC113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson L, Venkataraman S, Stevenson P, Yang Y, Moss J, Graham L, Burton N, Hill B, Rao J, Baldock RA, Armit C (2014) EMAGE mouse embryo spatial gene expression database: 2014 update. Nucleic Acids Res 42(Database issue):D835–D844. doi:10.1093/nar/gkt1155

    Article  CAS  PubMed  Google Scholar 

  • Richerson GB (1995) Response to CO2 of neurons in the rostral ventral medulla in vitro. J Neurophysiol 73(3):933–944

    CAS  PubMed  Google Scholar 

  • Richerson GB (2004) Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci 5(6):449–461. doi:10.1038/nrn1409. nrn1409[pii]

    Article  CAS  PubMed  Google Scholar 

  • Richter DW, Manzke T, Wilken B, Ponimaskin E (2003) Serotonin receptors: guardians of stable breathing. Trends Mol Med 9(12):542–548

    Article  CAS  PubMed  Google Scholar 

  • Sahibzada N, Ferreira M, Wasserman AM, Taveira-DaSilva AM, Gillis RA (2000) Reversal of morphine-induced apnea in the anesthetized rat by drugs that activate 5-hydroxytryptamine(1A) receptors. J Pharmacol Exp Ther 292(2):704–713

    CAS  PubMed  Google Scholar 

  • Shideler KK, Yan J (2010) M1 muscarinic receptor for the development of auditory cortical function. Mol Brain 3:29. doi:10.1186/1756-6606-3-29. 1756-6606-3-29 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shirasawa S, Arata A, Onimaru H, Roth KA, Brown GA, Horning S, Arata S, Okumura K, Sasazuki T, Korsmeyer SJ (2000) Rnx deficiency results in congenital central hypoventilation. Nat Genet 24(3):287–290. doi:10.1038/73516

    Article  CAS  PubMed  Google Scholar 

  • Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254(5032):726–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JC, Butera RJ, Koshiya N, Del Negro C, Wilson CG, Johnson SM (2000) Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model. Respir Physiol 122(2–3):131–147

    Article  CAS  PubMed  Google Scholar 

  • Solomon IC (2003) Focal CO2/H+ alters phrenic motor output response to chemical stimulation of cat pre-Botzinger complex in vivo. J Appl Physiol 94(6):2151–2157. doi:10.1152/japplphysiol.01192.2002. 01192.2002 [pii]

    Article  PubMed  Google Scholar 

  • Soulier V, Peyronnet J, Pequignot JM, Cottet-Emard JM, Lagercrantz H, Dalmaz Y (1997) Long-term impairment in the neurochemical activity of the sympathoadrenal system after neonatal hypoxia in the rat. Pediatr Res 42(1):30–38. doi:10.1203/00006450-199707000-00006

    Article  CAS  PubMed  Google Scholar 

  • Steindler DA, Trosko BK (1989) Two types of locus coeruleus neurons born on different embryonic days in the mouse. Anat Embryol (Berl) 179(5):423–434

    Article  CAS  Google Scholar 

  • St-John WM (2008) Eupnea of in situ rats persists following blockers of in vitro pacemaker burster activities. Respir Physiol Neurobiol 160(3):353–356. doi:10.1016/j.resp.2007.12.002. S1569-9048(07)00339-4 [pii]

    Article  PubMed  Google Scholar 

  • Stornetta RL, Moreira TS, Takakura AC, Kang BJ, Chang DA, West GH, Brunet JF, Mulkey DK, Bayliss DA, Guyenet PG (2006) Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat. J Neurosci 26(40):10305–10314. doi:10.1523/JNEUROSCI.2917-06.2006. 26/40/10305 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Stunden CE, Filosa JA, Garcia AJ, Dean JB, Putnam RW (2001) Development of in vivo ventilatory and single chemosensitive neuron responses to hypercapnia in rats. Respir Physiol 127(2–3):135–155

    Article  CAS  PubMed  Google Scholar 

  • Takakura AC, Moreira TS, Colombari E, West GH, Stornetta RL, Guyenet PG (2006) Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2-sensitive neurons in rats. J Physiol 572(Pt 2):503–523. doi:10.1113/jphysiol.2005.103788. jphysiol.2005.103788 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor NC, Li A, Nattie EE (2006) Ventilatory effects of muscimol microdialysis into the rostral medullary raphe region of conscious rats. Respir Physiol Neurobiol 153(3):203–216

    Article  CAS  PubMed  Google Scholar 

  • Teppema LJ, Veening JG, Kranenburg A, Dahan A, Berkenbosch A, Olievier C (1997) Expression of c-fos in the rat brainstem after exposure to hypoxia and to normoxic and hyperoxic hypercapnia. J Comp Neurol 388(2):169–190

    Article  CAS  PubMed  Google Scholar 

  • Thoby-Brisson M, Ramirez JM (2001) Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice. J Neurophysiol 86(1):104–112

    CAS  PubMed  Google Scholar 

  • Thoby-Brisson M, Trinh JB, Champagnat J, Fortin G (2005) Emergence of the pre-Botzinger respiratory rhythm generator in the mouse embryo. J Neurosci 25(17):4307–4318. doi:10.1523/JNEUROSCI.0551-05.2005. 25/17/4307 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Thoby-Brisson M, Karlen M, Wu N, Charnay P, Champagnat J, Fortin G (2009) Genetic identification of an embryonic parafacial oscillator coupling to the preBotzinger complex. Nat Neurosci 12(8):1028–1035. doi:10.1038/nn.2354. nn.2354 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Tryba AK, Pena F, Lieske SP, Viemari JC, Thoby-Brisson M, Ramirez JM (2008) Differential modulation of neural network and pacemaker activity underlying eupnea and sigh-breathing activities. J Neurophysiol 99(5):2114–2125. doi:10.1152/jn.01192.2007. 01192.2007 [pii]

    Article  PubMed  Google Scholar 

  • Viemari JC, Ramirez JM (2006) Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons. J Neurophysiol 95(4):2070–2082. doi:10.1152/jn.01308.2005. 01308.2005 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Viemari JC, Burnet H, Bevengut M, Hilaire G (2003) Perinatal maturation of the mouse respiratory rhythm-generator: in vivo and in vitro studies. Eur J Neurosci 17(6):1233–1244

    Article  PubMed  Google Scholar 

  • Viemari JC, Bevengut M, Burnet H, Coulon P, Pequignot JM, Tiveron MC, Hilaire G (2004a) Phox2a gene, A6 neurons, and noradrenaline are essential for development of normal respiratory rhythm in mice. J Neurosci 24(4):928–937. doi:10.1523/JNEUROSCI.3065-03.2004. 24/4/928[pii]

    Article  CAS  PubMed  Google Scholar 

  • Viemari JC, Bevengut M, Coulon P, Hilaire G (2004b) Nasal trigeminal inputs release the A5 inhibition received by the respiratory rhythm generator of the mouse neonate. J Neurophysiol 91(2):746–758. doi:10.1152/jn.01153.2002. 01153.2002[pii]

    Article  PubMed  Google Scholar 

  • Viemari JC, Garcia AJ 3rd, Doi A, Ramirez JM (2011) Activation of alpha-2 noradrenergic receptors is critical for the generation of fictive eupnea and fictive gasping inspiratory activities in mammals in vitro. Eur J Neurosci 33(12):2228–2237. doi:10.1111/j.1460-9568.2011.07706.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallen-Mackenzie A, Gezelius H, Thoby-Brisson M, Nygard A, Enjin A, Fujiyama F, Fortin G, Kullander K (2006) Vesicular glutamate transporter 2 is required for central respiratory rhythm generation but not for locomotor central pattern generation. J Neurosci 26(47):12294–12307. doi:10.1523/JNEUROSCI.3855-06.2006. 26/47/12294 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Richerson GB (1999) Development of chemosensitivity of rat medullary raphe neurons. Neuroscience 90(3):1001–1011

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Pizzonia JH, Richerson GB (1998) Chemosensitivity of rat medullary raphe neurones in primary tissue culture. J Physiol 511(Pt 2):433–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Tiwari JK, Bradley SR, Zaykin RV, Richerson GB (2001) Acidosis-stimulated neurons of the medullary raphe are serotonergic. J Neurophysiol 85(5):2224–2235

    CAS  PubMed  Google Scholar 

  • Wang S, Xu DJ, Cai JB, Huang YZ, Zou JG, Cao KJ (2009) Rapid component I(Kr) of cardiac delayed rectifier potassium currents in guinea-pig is inhibited by alpha(1)-adrenoreceptor activation via protein kinase A and protein kinase C-dependent pathways. Eur J Pharmacol 608(1–3):1–6. doi:10.1016/j.ejphar.2009.02.017. S0014-2999(09)00156-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Wang CC, Borchert A, Ugun-Klusek A, Tang LY, Lui WT, Chu CY, Billett E, Kuhn H, Ufer C (2011a) Monoamine oxidase a expression is vital for embryonic brain development by modulating developmental apoptosis. J Biol Chem 286(32):28322–28330. doi:10.1074/jbc.M111.241422. M111.241422 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZQ, Chen K, Ying QL, Li P, Shih JC (2011b) Monoamine oxidase A regulates neural differentiation of murine embryonic stem cells. J Neural Transm 118(7):997–1001. doi:10.1007/s00702-011-0655-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenker IC, Kreneisz O, Nishiyama A, Mulkey DK (2010) Astrocytes in the retrotrapezoid nucleus sense H+ by inhibition of a Kir4.1-Kir5.1-like current and may contribute to chemoreception by a purinergic mechanism. J Neurophysiol 104(6):3042–3052. doi:10.1152/jn.00544.2010. jn.00544.2010 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Dias P, Kumar S, Lauder JM, Singh S (1999) Differential expression of serotonin 5-HT2 receptors during rat embryogenesis. Dev Neurosci 21(1):22–28. 17362 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Kanno T, Yamada K, Yasuda Y, Nishizaki T (2009) Dual regulation of heat-activated K+ channel in rat DRG neurons via alpha(1) and beta adrenergic receptors. Life Sci 85(3–4):167–171. doi:10.1016/j.lfs.2009.05.009. S0024-3205(09)00227-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Yew DT, Chan WY (1999) Early appearance of acetylcholinergic, serotoninergic, and peptidergic neurons and fibers in the developing human central nervous system. Microsc Res Tech 45(6):389–400. doi:10.1002/(SICI)1097-0029(19990615)45:6<389::AID-JEMT6>3.0.CO;2-Z. [pii]10.1002/(SICI)1097-0029(19990615)45:6<389::AID-JEMT6>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  • Zanella S, Roux JC, Viemari JC, Hilaire G (2006) Possible modulation of the mouse respiratory rhythm generator by A1/C1 neurones. Respir Physiol Neurobiol 153(2):126–138. doi:10.1016/j.resp.2005.09.009. S1569-9048(05)00257-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Zavala-Tecuapetla C, Aguileta MA, Lopez-Guerrero JJ, Gonzalez-Marin MC, Pena F (2008) Calcium-activated potassium currents differentially modulate respiratory rhythm generation. Eur J Neurosci 27(11):2871–2884. doi:10.1111/j.1460-9568.2008.06214.x. EJN6214 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZQ, Scott M, Chiechio S, Wang JS, Renner KJ, Gereau RW, Johnson RL, Deneris ES, Chen ZF (2006) Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J Neurosci 26(49):12781–12788. doi:10.1523/JNEUROSCI.4143-06.2006. 26/49/12781 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Grants Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) # 1171434 (JE), Beltran-Morgado Foundation for the Advancement and Communication of Neuroscience in Veracruz, Comisión Nacional de Ciencia y Tecnología (CONICYT) #21120594 (S Beltrán-Castillo). DICYT-USACH (JE).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Consuelo Morgado-Valle PhD or Jaime Eugenín MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Beltrán-Castillo, S., Morgado-Valle, C., Eugenín, J. (2017). The Onset of the Fetal Respiratory Rhythm: An Emergent Property Triggered by Chemosensory Drive?. In: von Bernhardi, R., Eugenín, J., Muller, K. (eds) The Plastic Brain. Advances in Experimental Medicine and Biology, vol 1015. Springer, Cham. https://doi.org/10.1007/978-3-319-62817-2_10

Download citation

Publish with us

Policies and ethics