Advertisement

On the Power of Permitting Semi-conditional Grammars

  • Zsolt GazdagEmail author
  • Krisztián Tichler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10396)

Abstract

Permitting semi-conditional grammars are such extensions of context-free grammars where each rule is associated with a word v, and such a rule can be applied to a sentential form u only if v is a subword of u. In this paper we show that the class of languages generated by permitting semi-conditional grammars with no erasing rules is strictly included in the class of context-sensitive languages.

Keywords

Conditional grammars Permitting context Generative power 

Notes

Acknowledgement

We are grateful to Erzsébet Csuhaj Varjú for introducing us the topic of this paper and also for her many useful comments on it. We thank the anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

References

  1. 1.
    Bordihn, H., Fernau, H.: Accepting grammars and systems: an overview. In: Developments in Language Theory, Magdeburg, Germany (1995)Google Scholar
  2. 2.
    Dassow, J., Masopust, T.: On restricted context-free grammars. J. Comput. Syst. Sci. 78(1), 293–304 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer, New York (1989)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with \(n\) distinct prime factors. Am. J. Math. 35(4), 413–422 (1913)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ewert, S., van der Walt, A.: A shrinking lemma for random forbidding context languages. Theor. Comput. Sci. 237(1–2), 149–158 (2000)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ewert, S., van der Walt, A.: A pumping lemma for random permitting context languages. Theor. Comput. Sci. 270(1–2), 959–967 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gazdag, Z.: A note on context-free grammars with rewriting restrictions. In: Brodnik, A., Galambos, G. (eds.) Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science. University of Primorska Press, Koper (2011)Google Scholar
  8. 8.
    Gazdag, Z.: Remarks on some simple variants of random context grammars. J. Autom. Lang. Comb. 19(1–4), 81–92 (2014)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gazdag, Z., Tichler, K.: On the power of permitting semi-conditional grammars, extended version. https://www.researchgate.net/publication/312587701_On_the_Power_of_Permitting_Semi-conditional_Grammars
  10. 10.
    Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc. 3(1), 326–336 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Joshi, A.K.: Tree adjoining grammars: how much context-sensitivity is required to provide reasonable structural descriptions? In: Dowty, D.R., Karttunen, L., Zwicky, A.M. (eds.) Natural Language Parsing, pp. 206–250. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  12. 12.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall PTR, Upper Saddle River, NJ, USA (2000)Google Scholar
  13. 13.
    Kelemen, J.: Conditional grammars: motivations, definitions, and some properties. In: Proceedings of the Conference on Automata, Languages and Mathematical Sciences, Salgótarján, pp. 110–123 (1984)Google Scholar
  14. 14.
    Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Trans. Am. Math. Soc. 95(2), 210–225 (1960)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Masopust, T.: Simple restriction in context-free rewriting. J. Comput. Syst. Sci. 76(8), 837–846 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Păun, G.: A variant of random context grammars: semi-conditional grammars. Theor. Comput. Sci. 41, 1–17 (1985)CrossRefzbMATHGoogle Scholar
  17. 17.
    Salomaa, A.: Formal Languages. Academic Press, New York, London (1973)zbMATHGoogle Scholar
  18. 18.
    van der Walt, A.: Random context languages. Inf. Process. 71, 66–68 (1972)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Zetzsche, G.: On erasing productions in random context grammars. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 175–186. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14162-1_15 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Foundations of Computer ScienceUniversity of SzegedSzegedHungary
  2. 2.Department of Algorithms and Their ApplicationsEötvös Loránd UniversityBudapestHungary

Personalised recommendations