Nanoenergy pp 277-299 | Cite as

Neutralization Batteries

  • William G. Morais
  • Gilberto Lima
  • Fritz HugueninEmail author


The addition of bases or acids in wastewater treatment can be a viable strategy to convert chemical energy into useful work. So, this chapter discourses on an acid–base machine that operates in cycles of four stages: two of them are buffered isothermal steps, and the other two stages constitute the passage of matter from acid and basic reservoirs. This machine is an electrochemical system, a Neutralization Battery, which carries out work converted from partial change in entropy associated with change in the activity of proton, hydroxyl and/or alkaline ion from the neutralization reactions. Nanomaterials have been investigated and used as proof of concept in these acid–base machines with electrolytic solutions at several pH values. Thermodynamic approach provides efficiency and maximum work of the batteries performed after the full cycle. Additionally, kinetics studies on the ion insertion/deinsertion in the nanomaterials enable a better understanding on the practical irreversibility, and the choice of nanomaterials with suitable properties to be used in the neutralization batteries, aiming to achieve profitable wastewater treatment and environmental preservation, contributing for the sustainable growth.


Neutralization battery Mixing entropy battery Energy harvesting CAPMIX  Insertion electrode 



We are grateful to FAPESP (Project 2015/ 16867-9) for financial support.


  1. 1.
    Yang ZG, Zhang JL, Kintner-Meyer MCW, Lu XC, Choi DW, Lemmon JP, Liu J (2011) Chem Rev 111:3577CrossRefGoogle Scholar
  2. 2.
    REN21, Renewables (2016) Global status report. REN21 Secretariat, ParisGoogle Scholar
  3. 3.
    Pattle RE (1954) Nature 174:660CrossRefGoogle Scholar
  4. 4.
    Levenspiel O, de Nevers N (1974) Science 183:157CrossRefGoogle Scholar
  5. 5.
    Weinstien JN, Leitz FB (1976) Science 191:557CrossRefGoogle Scholar
  6. 6.
    Olsson M, Wick GL, Isaacs JD (1979) Science 206:452CrossRefGoogle Scholar
  7. 7.
    Kiviat FE (1976) Science 194:719CrossRefGoogle Scholar
  8. 8.
    Brogioli D (2009) Phys Rev Lett 103:58501CrossRefGoogle Scholar
  9. 9.
    La Mantia F, Pasta M, Deshazer HD, Logan BE, Cui Y (1810) Nano Lett 2011:11Google Scholar
  10. 10.
    Facci T, Gomes WJAS, Bravin B, Araujo DM, Huguenin F (2014) Langmuir 30:426CrossRefGoogle Scholar
  11. 11.
    Gomes WJAS, de Oliveira C, Huguenin F (2015) Langmuir 31:8710CrossRefGoogle Scholar
  12. 12.
    Bravin B, Gomes WJAS, Huguenin F (2016) J Electroanal Chem 765:52CrossRefGoogle Scholar
  13. 13.
    Morais WG, Gomes WJAS, Huguenin F (2016) J Phys Chem C 120:17872CrossRefGoogle Scholar
  14. 14.
    Sadakane M, Steckhan E (1998) Chem Rev 98:219CrossRefGoogle Scholar
  15. 15.
    Ruiz V, Suárez-Guevara J, Gomez-Romero P (2012) Electrochem Commun 24:35CrossRefGoogle Scholar
  16. 16.
    Suppes GM, Cameron CG, Freund MS (2010) J Electrochem Soc 157:A1030CrossRefGoogle Scholar
  17. 17.
    Lei C, Wilson P, Lekakou C (2011) J Power Sources 196:7823CrossRefGoogle Scholar
  18. 18.
    Pandey K, Lakshmi N (1999) J Mater Sci 34:1749CrossRefGoogle Scholar
  19. 19.
    Ahonen HJ, Lukkari J, Kankare J (2000) Macromolecules 33:6787CrossRefGoogle Scholar
  20. 20.
    Smith RR, Smith AP, Stricker JT, Taylor BE, Durstock MF (2006) Macromolecules 39:6071CrossRefGoogle Scholar
  21. 21.
    Wang YH, Wang XL, Hu CW (2002) J Colloid Interface Sci 249:307CrossRefGoogle Scholar
  22. 22.
    Kurth DG, Volkmer D, Ruttorf M, Richter B, Muller A (2000) Chem Mater 12:2829CrossRefGoogle Scholar
  23. 23.
    Vaillant J, Lira-Cantu M, Cuentas-Gallegos K, Casan-Pastor N, Gomez-Romero P (2006) Prog Solid State Chem 34:147CrossRefGoogle Scholar
  24. 24.
    Plieth W, Bund A, Rammelt U, Neudeck S, Duc L (2006) Electrochim Acta 51:2366CrossRefGoogle Scholar
  25. 25.
    Toth PS, Janaky C, Berkesi O, Tamm T, Visy C (2012) J Phys Chem B 116:5491CrossRefGoogle Scholar
  26. 26.
    Orazem ME, Tribollet B (2008) John Wiley & Sons, Inc.Google Scholar
  27. 27.
    Ho C, Raistrick ID, Huggins RA (1980) J Electrochem Soc 127:343CrossRefGoogle Scholar
  28. 28.
    Bisquert J, Compte A (2001) J Electroanal Chem 499:112CrossRefGoogle Scholar
  29. 29.
    Syritski V, Idla K, Öpik A (2004) Synth Met 144:235CrossRefGoogle Scholar
  30. 30.
    Liu N, Li W, Pasta M, Cui Y (2014) Front Phys 9:323CrossRefGoogle Scholar
  31. 31.
    Pasta M, Wessells CD, Huggins RA, Cui Y (2012) Nat Commun 3:1149CrossRefGoogle Scholar
  32. 32.
    Jia Z, Wang J, Wang Y (2014) RSC Advances 4:22768CrossRefGoogle Scholar
  33. 33.
    Wessells CD, McDowell MT, Peddada SV, Pasta M, Huggins RA, Cui Y (2012) ACS Nano 6:1688CrossRefGoogle Scholar
  34. 34.
    Yue Y, Binder AJ, Guo B, Zhang Z, Qiao ZA, Tian C, Dai S (2014) Angew Chem Int Ed 53:3134Google Scholar
  35. 35.
    Wu X, Cao Y, Ai X, Qian J, Yang H (2013) Electrochem Commun 31:145CrossRefGoogle Scholar
  36. 36.
    Wu X-Y, Sun M-Y, Shen Y-F, Qian J-F, Cao Y-L, Ai X-P, Yang H-X (2014) Chemsuschem 7:407CrossRefGoogle Scholar
  37. 37.
    Nie P, Shen L, Luo H, Ding B, Xu G, Wang J, Zhang XJ (2014) Mater Chem A 2:5852CrossRefGoogle Scholar
  38. 38.
    Wessells CD, Peddada SV, Huggins RA, Cui Y (2011) Nano Lett 11:5421CrossRefGoogle Scholar
  39. 39.
    Baioni AP, Vidotti M, Fiorito PA, Ponzio E, Córdoba de Torresi SI (2007) Langmuir 23:6796CrossRefGoogle Scholar
  40. 40.
    Lu Y, Wang L, Cheng J, Goodenough JB (2012) Chem Commun 48:6544CrossRefGoogle Scholar
  41. 41.
    Lee H, Kim Y-I, Park J-K, Choi JW (2012) Chem Commun 48:8416CrossRefGoogle Scholar
  42. 42.
    Itaya KUI, Neff VD (1986) Acc Chem Res 19:162Google Scholar
  43. 43.
    Wessells CD, Peddada SV, McDowell MT, Huggins RA, Cui Y (2012) J Electrochem Soc 159:A98CrossRefGoogle Scholar
  44. 44.
    Rica R, Ziano R, Salerno D, Mantegazza F, van Roij R, Brogioli D (2013) Entropy 15:1388CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • William G. Morais
    • 1
  • Gilberto Lima
    • 1
  • Fritz Huguenin
    • 1
    Email author
  1. 1.Departamento de Química, Faculdade de Filosofia, Ciências E Letras de Ribeirão PretoUniversidade de São PauloRibeirão Preto (SP)Brazil

Personalised recommendations