Nanoenergy pp 251-276 | Cite as

Prospective on the Use of Nanostructured Magnesium Alloys as Anode Materials for Ni–MH Rechargeable Batteries

  • Sydney Ferreira SantosEmail author
  • Flavio Ryoichi Nikkuni
  • Edson Antonio Ticianelli


New developments on portable electronics, electrical vehicles, and hybrid electrical vehicles drive the demand for secondary batteries with optimized performances, such as larger energy densities, specific energies, and power densities. In this scenarios the development of nickel—metal hydride (Ni–MH) rechargeable batteries with improved performances is mandatory to achieve the present needs and also to face the tough competition with other technologies such as Li-ion batteries and low-temperature fuel cells. The production of such improved batteries is closely related to the development of novel hydrogen storage materials which can be successfully achieved through the incorporation of new finds of nanotechnology. In this chapter, some fundamental aspects concerning Ni–MH cells and their component materials are introduced. Recent developments on anode materials, such as novel alloy compositions, non-conventional processing routes, and optimized microstructures are depicted. Furthermore, special emphasis is given for the nanostructured Mg alloys which are promising candidates for this application.


  1. 1.
    Fetcenko MA, Ovshinsky SR, Reichman B, Young K, Fierro C, Zallen A, Mays W, Ouchi T (2007) Recent advances in NiMH battery technology. J Power Sources 165:544–551CrossRefGoogle Scholar
  2. 2.
    Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill, USAGoogle Scholar
  3. 3.
    Li MM, Yang CC, Wang CC, Wen Z, Zhu YF, Zhao M, Li JC, Zheng WT, Lian JS, Jiang Q (2016) Design of hydrogen storage alloys/nanoporous metals hybrid electrodes for nickel-metal hydride batteries. Sci Rep 6:27601CrossRefGoogle Scholar
  4. 4.
    Young KH, Nei J (2013) The current status of hydrogen storage alloy development for electrochemical applications. Materials 6:4574–4608CrossRefGoogle Scholar
  5. 5.
    Oumellal Y, Rougier A, Nazri GA, Tarascon J-M, Aymard L (2008) Metal hydrides for lithium-ion batteries. Nat Mater 7:916–921CrossRefGoogle Scholar
  6. 6.
    Sakai T, Iwaki T, Ye Z, Noréus D, Lindstrom O (1995) Air-metal hydride battery construction and evaluation. J Electrochem Soc 142:4040–4045CrossRefGoogle Scholar
  7. 7.
    Hu W-K, Ye Z, Noréus D (2001) Influence of MH electrode thickness and packing density on the electrochemical performance of air-MH batteries. J Power Sources 102:35–40CrossRefGoogle Scholar
  8. 8.
    Wang XH, Chen Y, Pan HG, Xu RG, Li SQ, Chen LX, Chen CP, Wang QD (1999) Electrochemical properties of Ml(NiCoMnCu)5 used as an alkaline fuel cell anode. J Alloys Compd 293:833–837CrossRefGoogle Scholar
  9. 9.
    Hu W-K, Gao X-P, Kiros Y, Middelman E, Noréus D (2004) Zr-based AB2-type hydrogen storage alloys as dual catalysts of gas-diffusion electrodesin an alkaline fuel cell. J Phys Chem B 108:8756–8758CrossRefGoogle Scholar
  10. 10.
    Chartouni D, Kuriyama N, Kiyobayashi T, Chen J (2002) Int J Hydrogen Energy 27:945–952CrossRefGoogle Scholar
  11. 11.
    Hu W-K, Noréus D (2003) Rare-earth-based AB5-type hydrogen storage alloys as hydrogen electrode catalysts in alkaline fuel cells. J Alloys Compd 356–357:734–737CrossRefGoogle Scholar
  12. 12.
    Chen Y, Santos DMF, Sequeira CAC, Lobo RFM (2012) Studies of modified hydrogen storage intermetallic compounds used as fuel cell anodes. Crystals 2:22–33CrossRefGoogle Scholar
  13. 13.
    Lee S-M, Kim J-H, Lee H-H, Lee PS, Lee J-Y (2002) The characterization of an alkaline fuel cell that uses hydrogen storage alloys. J Electrochem Soc 149:A603–A606CrossRefGoogle Scholar
  14. 14.
    Paschoalino WJ, Ticianelli EA (2013) An investigation of the borohydride oxidation reaction on LaNi-based hydrogen storage alloys. Int J Hydrogen Energy 38:7344–7352CrossRefGoogle Scholar
  15. 15.
    Paschoalino WJ, Thompson SJ, Russell AE, Ticianelli EA (2014) The borohydride oxidation reaction on La-Ni-based hydrogen-storage alloys. ChemPhysChem 15:2170–2176Google Scholar
  16. 16.
    Santos SF, Ishikawa TT, Ticianelli EA (2009) Fundamentals and technological applications of hydrogen—absorbing Mg amorphous alloys. In: Telle JR, Pearstine NA (eds) Amorphous materials: research, technology and applications. Nova Science Publishers, USA, pp 219–237Google Scholar
  17. 17.
    Harding Battery Handbook for Quest® Rechargeable Cells and Battery Packs (2004) One energy centre shores, MI.
  18. 18.
    Notten PHL, Ouwerkerk M, van Hal H, Beelen D, Keur D, Zhuo J, Feil H (2004) High energy density strategies: from hydride-forming materials research to battery integration. J Power Sources 129:45–54CrossRefGoogle Scholar
  19. 19.
    Wronski ZS (2001) Materials for rechargeable batteries and clean hydrogen energy sources. Int Mater Rev 46:1–49CrossRefGoogle Scholar
  20. 20.
    Smallman RE, Bishop RJ (1999) Modern physical metallurgy and engineering materials: science, processing and applications, 6th edn. Butterworth Heinemann, UKGoogle Scholar
  21. 21.
    Park CN, Luo S, Flanagan TB (2004) Analysis of sloping plateaux in alloys and intermetallic hydrides I: diagnostic features. J Alloys Compd 384:203–207CrossRefGoogle Scholar
  22. 22.
    Huot J (2010) Metal hydrides. In: Hirscher M (ed) Handbook of hydrogen storage, Willey-VCH, WeinheimGoogle Scholar
  23. 23.
    Schlapbach L, Zuttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:253–258CrossRefGoogle Scholar
  24. 24.
    Mosavati N, Young K-H, Meng T, Simon Ng KY (2016) Electrochemical open-circuit voltage and pressure-concentration-temperature isotherm comparison for metal hydride alloys. Batteries 2:1–11CrossRefGoogle Scholar
  25. 25.
    Reilly JJ, Adzic GD, Johnson JR, Vogt T, Mukerjee S, McBreen J (1999) The correlation between composition and electrochemical properties of metal hydride electrodes. J Alloys Compd. 293–295:569–582CrossRefGoogle Scholar
  26. 26.
    Ambrosio RC, Ticianelli EA (2002) Effect of cobalt on the physicochemical properties of a simple LaB5 metal hydride alloy. J Power Sources 110:73–79CrossRefGoogle Scholar
  27. 27.
    Lin Q, Zhao S, Zhu DJ, Song B, Mei Z (2003) Investigation of hydriding properties and structure of MlNi5−xSnx system. J Alloys Compd 351:91–94CrossRefGoogle Scholar
  28. 28.
    Liu J, Yang Y, Li Y, Yu P, He Y, Shao H (2007) Comparative study of LaNi4.7M0.3 by powder microelectrode technique. Int J Hydrogen Energy 32:1905–1910CrossRefGoogle Scholar
  29. 29.
    Ayari M, Paul-Boncour V, Lamloumi J, Percheron-Guégan A, Guillot M (2005) Study of the aging of LaNi3.55Mn0.4Al0.3(Co1−xFex)0.75 (0 ≤ x ≤ 1) compounds in Ni–MH batteries by SEM and magnetic measurements. J Magn Magn Mater 288:374–383CrossRefGoogle Scholar
  30. 30.
    Ben Moussa M, Abdellaoui M, Mathlouthi H, Lamloumi J, Percheron-Guégan A (2008) Electrochemical properties of the MmNi3.55Mn0.4Al0.3Co0.75−xFex (x = 0.55 and 0.75) compounds. J Alloys Compd 458:410–414CrossRefGoogle Scholar
  31. 31.
    dos Santos AR, Ambrosio RC, Ticianelli EA (2004) Electrochemical and structural studies on nonstoichiometric AB2-type metal hydride alloys. Int J Hydrogen Energy 29:1253–1261CrossRefGoogle Scholar
  32. 32.
    Awad AS, Nakhl M, Zakhour M, Santos SF, Souza FL, Bobet J-L (2016) Effect of microwave irradiation on hydrogen sorption properties of hand mixed MgH2—10 wt.% carbon fibers. J Alloys Compd 676:1–8CrossRefGoogle Scholar
  33. 33.
    Asselli AAC, Santos SF, Huot J (2016) Hydrogen storage in filed magnesium. J Alloys Compd 687:586–594CrossRefGoogle Scholar
  34. 34.
    Santos SF, Ishikawa TT, Botta Filho WJ, Huot J (2014) MgH2 + FeNb nanocomposites for hydrogen storage. Mater Chem Phys 147:557–562CrossRefGoogle Scholar
  35. 35.
    Jain P, Lang J, Skryabina N, Fruchart D, Santos SF, Binder K, Klassen T, Huot J (2013) MgH2 as dopant for improved activation of commercial Mg ingot. J Alloys Compd 575:364–369CrossRefGoogle Scholar
  36. 36.
    Liang G, Huot J, Boily S, Van Neste A, Schulz R (1999) Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J Alloys Compd 292:247–252CrossRefGoogle Scholar
  37. 37.
    Dornheim M, Doppiu S, Barkhordarian G, Boesenberg U, Klassen T, Gutfleisch O, Bormann R (2007) Hydrogen storage in magnesium-based hydrides and hydride composites. Scripta Mater 56:841–846CrossRefGoogle Scholar
  38. 38.
    Zhang DL, Ying DY (2001) Solid state reactions in nanometer scaled diffusion couples prepared using high energy ball milling. Mater Sci Eng, A 301:90–96CrossRefGoogle Scholar
  39. 39.
    Suryanarayana C (2001) Mechanical alloying and milling. Prog Mat Sci 46:1–184CrossRefGoogle Scholar
  40. 40.
    Murty BS, Ranganathan S (1998) Novel materials synthesis by mechanical alloying/milling. Int Mater Rev 43:101–141CrossRefGoogle Scholar
  41. 41.
    El-Eskandarany MS (2001) Mechanical alloying for fabrication of advanced engineering materials. Noyes Publications, NorwichGoogle Scholar
  42. 42.
    Liu W, Wu H, Lei Y, Wang Q, Wu J (1997) Amorphization and electrochemical hydrogen storage properties of mechanically alloyed Mg–Ni. J Alloys Comp 252:234–237CrossRefGoogle Scholar
  43. 43.
    Zhang SG, Yorimitsu K, Nohara S, Morikawa T, Inoue I, Iwakura C (1998) Surface analysis of an amorphous MgNi alloy prepared by mechanical alloying for use in nickel–metal hydride batteries. J Alloys Compd 270:123–126CrossRefGoogle Scholar
  44. 44.
    Zhang SG, Hara Y, Morikawa T, Inoue I, Iwakura C (1999) Electrochemical and structural characteristics of amorphous MgNix (x ≥ 1) alloys prepared by mechanical alloying. J Alloys Compd 293:552–555CrossRefGoogle Scholar
  45. 45.
    Feng F, Northwood DO (2004) Effect of surface modification on the performance of negative electrodes in Ni/MH batteries. Int J Hydrogen Energy 29:955–960CrossRefGoogle Scholar
  46. 46.
    Ambrosio RC, Ticianelli EA (2005) Studies on the influence of palladium coatings on the electrochemical and structural properties of a metal hydride alloy. Surf Coating Tech 197:215–222CrossRefGoogle Scholar
  47. 47.
    Deng C, Shi P, Zhang S (2006) Effect of surface modification on the electrochemical performances of LaNi5 hydrogen storage alloy in Ni/MH batteries. Mater Chem Phys 98:514–518CrossRefGoogle Scholar
  48. 48.
    Ambrosio RC, Ticianelli EA (2005) Electrochemical and X-ray absorption spectroscopy studies of copper coatings on a hydrogen storage alloy. J Electroanalytical Chem 574:251–260CrossRefGoogle Scholar
  49. 49.
    Rongeat C, Grosjean MH, Ruggeri S, Dehmas M, Bourlot S, Marcotte S, Roué L (2006) Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni–MH batteries. J Power Sources 158:747–753CrossRefGoogle Scholar
  50. 50.
    Santos SF, de Castro JFR, Ishikawa TT, Ticianelli EA (2008) Effect of Mechanical Coating with Ni and Ni-5% Al on the structure and electrochemical properties of the Mg-50% Ni Alloy. J Mater Sci 43:2889–2894CrossRefGoogle Scholar
  51. 51.
    Li M, Zhu Y, Yang C, Zhang J, Chen W, Li L (2015) Enhanced electrochemical hydrogen storage properties of Mg2NiH4 by coating with nano-nickel. Int J Hydrogen Energy 40:13949–13956CrossRefGoogle Scholar
  52. 52.
    Liu W, Wu H, Lei Y, Wang Q, Wu J (1997) Effects of substitution of other elements for nickel in mechanically alloyed Mg50Ni50 amorphous alloys used for nickel—metal hydride batteries. J Alloys Compd 261:289–294CrossRefGoogle Scholar
  53. 53.
    Santos SF, de Castro JFR, Ishikawa TT, Ticianelli EA (2007) Effect of transition metal additions on the electrochemical properties of a MgNi-based alloy. J Alloys Compd 434:756–759CrossRefGoogle Scholar
  54. 54.
    Iwakura C, Shyn-ya R, Miyanohara K, Nohara S, Inoue H (2001) Effects of Ti–V substitution on electrochemical and structural characteristics of MgNi alloy prepared by mechanical alloying. Electrochem Acta 46:2781–2786CrossRefGoogle Scholar
  55. 55.
    Han SC, Lee PS, Lee JY, Zuttel A, Schlapbach L (2000) Effects of Ti on the cycle life of amorphous MgNi-based alloy prepared by ball milling. J Alloys Compd 306:219–226CrossRefGoogle Scholar
  56. 56.
    Huang L-J, Tang J-G, Wang Y, Liu J-X, Wu DC (2009) Effects of microstructure on the electrode properties of melt–spun Mg-based amorphous alloys. J Alloys Compd 485:186–191CrossRefGoogle Scholar
  57. 57.
    Ren HP, Zhang YH, Li BW, Zhao DL, Guo SH, Wang XL (2009) Influence of the substitution of La for Mg on the microstructure and hydrogen storage characteristics of Mg20−xLaxNi10 (x = 0–6) alloys. Int J Hydrogen Energy 34:1429–1436CrossRefGoogle Scholar
  58. 58.
    Yamaura SI, Kim HY, Kimura H, Inoue A, Arata Y (2002) Electrode properties of rapidly solidified Mg67Ni23Pd10 amorphous alloy. J Alloys Compd 347:239–243CrossRefGoogle Scholar
  59. 59.
    Ma T, Hatano Y, Abe T, Watanabe K (2004) Effects of Pd addition on electrochemical properties of MgNi. J Alloys Compd 372:251–258CrossRefGoogle Scholar
  60. 60.
    Santos SF, Castro JFR, Ticianelli EA (2013) Microstructures and electrode performances of Mg50Ni(50-X)Pdx alloys. Cent Eur J Chem 11:485–491Google Scholar
  61. 61.
    Souza EC, de Castro JFR, Ticianelli EA (2006) A new electrode material for nickel-metal hydride batteries: MgNiPt alloy prepared by ball-milling. J Power Sources 160:1425–1430CrossRefGoogle Scholar
  62. 62.
    Nikkuni FR, Santos SF, Ticianelli EA (2010) Effects of Pd and Pt additions on the structure and electrochemical performance of Mg-Ti-Ni alloy electrodes. Proceedings of the Brazil MRS Meeting, Ouro Preto, BrazilGoogle Scholar
  63. 63.
    de Castro JFR, Santos SF, Nikkuni FR, Ishikawa TT, Ticianelli EA (2010) Structural and electrochemical characteristics of Mg(55−x)TixNi(45−y)Pty metal hydride electrodes. J Alloys Compd 498:57–61CrossRefGoogle Scholar
  64. 64.
    Nakagawa M, Matsuya S, Udoh K (2001) Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions. Dental Mater J 20:305–314CrossRefGoogle Scholar
  65. 65.
    Nakagawa M, Matsuya S, Udoh K (2002) Effects of fluoride and dissolved oxygen concentrations on the corrosion behavior of pure titanium and titanium alloys. Dental Mater J 21:83–92CrossRefGoogle Scholar
  66. 66.
    Nikkuni FR, Santos SF, Ticianelli EA (2013) Microstructures and electrochemical properties of Mg49Ti6Ni(45-x)Mx (M=Pd and Pt) alloy electrodes. Int J Energy Res 37:706–712CrossRefGoogle Scholar
  67. 67.
    Yartys V, Noreus D, Latroche M (2016) Metal hydrides as negative electrode materials for Ni–MH batteries. Appl Phys A 122:1–11Google Scholar
  68. 68.
    Xie L, Li J, Zhang T, Song L, Kou H (2017) Microstructure and hydrogen storage properties of Mg-Ni-Ce alloys with a long-period stacking ordered phase. J Power Sources 338:91–102CrossRefGoogle Scholar
  69. 69.
    Liu Y, CaoY, Li Huang L, Gao M, Pan H (2011) Rare Earth–Mg–Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries. J Alloys Compd 509:675–686Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sydney Ferreira Santos
    • 1
    Email author
  • Flavio Ryoichi Nikkuni
    • 2
  • Edson Antonio Ticianelli
    • 3
  1. 1.Centro de Engenharia, Modelagem e Ciências Sociais AplicadasUniversidade Federal do ABCSanto AndréBrazil
  2. 2.Fundação Parque Tecnológico ItaipuFoz do IguaçuBrazil
  3. 3.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations