Advertisement

Nanoenergy pp 223-249 | Cite as

Nanocomposites from V2O5 and Lithium-Ion Batteries

  • Fritz HugueninEmail author
  • Ana Rita Martins
  • Roberto Manuel Torresi
Chapter

Abstract

In this chapter, V2O5 xerogel and nanocomposites of V2O5 and polymers as well as the charge storage properties are described and discussed, aiming their use as cathode for lithium-ion batteries. First, the different synthesis methods are presented, emphasizing the sol–gel methods via vanadates and vanadium alkoxides. Structural aspects are briefly mentioned to a better comprehension of lithium-ion insertion/deinsertion, which influence on the electrochemical properties, and consequently, on the charge capacity of electrodes formed of V2O5. Nanostructured materials such as nanorolls, nanobelts, nanowires, and ordered nanorods arrays have been prepared and studied to increase the specific capacity, energy density, and power density. Moreover, the intimate contact between the nanocomposite components can also guarantee the enhancement of these properties so that these materials can be used in lithium-ion batteries. Intermolecular interactions are also investigated to explain the performance of these positive electrodes. Various polymers have been used in these nanomaterials to increase the electronic conductivity as well as the ionic diffusion, and/or electrochemical stability.

Notes

Acknowledgements

Financial support from FAPESP, CNPq, and Capes is gratefully acknowledged.

References

  1. 1.
    Cheng F, Tao Z, Liang J, Chen J (2008) Template-Directed Materials for Rechargeable Lithium-Ion Batteries. Chem Mater 20:667 Google Scholar
  2. 2.
    Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359Google Scholar
  3. 3.
    Bruce PG, Scrosati B, Tarascon J-M  (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930Google Scholar
  4. 4.
    Wang Y, Cao G  (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251Google Scholar
  5. 5.
    Liu C, Li F, Ma LP, Cheng H-M (2010) Advanced materials for Energy Storage. Adv Mater 22:E28Google Scholar
  6. 6.
    Li H, Wang Z, Xeng L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593Google Scholar
  7. 7.
    Guo Y-G, Hu J-S, Wan L-J  (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878Google Scholar
  8. 8.
    Balaya P, Bhattacharyya AJ, Jamnik J, Zhukovkii YF, Kotomin EA, Maier J  (2006) Nano-ionics in the context of lithium batteries. J Power Sources 159:171Google Scholar
  9. 9.
    Armand M, Tarascon J-M  (2008) Building better batteries. Nature 451:652Google Scholar
  10. 10.
    Whittingham MS  (2004) Lithium batteries and cathode materials. Chem Rev 104:4271Google Scholar
  11. 11.
    Tarascon J-M (2010) Key challenges in future Li-battery research. Philos Trans R Soc A Math Phys Eng Sci 368:3227Google Scholar
  12. 12.
    Brodd RJ, Bullock KR, Leising RA, Middaugh RL, Miller JR, Takeuchi E (2004) Batteries, 1977 to 2002. J Electrochem Soc 151:K1Google Scholar
  13. 13.
    Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192:1126Google Scholar
  14. 14.
    Rao BML, Francis RW, Christopher HA  (1977) Lithium-aluminum electrode. J Electrochem Soc 124:1490Google Scholar
  15. 15.
    Nagaura T, Tozawa K (1990) Lithium ion rechargeable battery. Prog Batteries Solar Cells 9:209Google Scholar
  16. 16.
    Ozawa K (1994) Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 69:212Google Scholar
  17. 17.
    Goodenough JB, Mizuchima K (1981) Electrochemical cell with new fast ion conductors US Patent 4,302,518Google Scholar
  18. 18.
    Ohzuku T (1995) In: Pistoia G (ed) Lithium batteries—new materials, developments and perspectives, vol 5, 2a edn. Elsevier, Amsterdam, p 239Google Scholar
  19. 19.
    Livage J (1991) Vanadium pentoxide gels. Chem Mater 3:578Google Scholar
  20. 20.
    Pereira-Ramos JP, Baffier N, Pistoia G (1995) In: Pistoia G (ed) Lithium batteries—new materials, developments and perspectives, vol 5, 2a edn. Elsevier, Amsterdam, p 281Google Scholar
  21. 21.
    Manthiram A, Kim J (1998) Low temperature synthesis of insertion oxides for lithium batteries. Chem Mater 10:2895Google Scholar
  22. 22.
    Owens BB, Smyrl WH, Xu JJ (1999) R&D on lithium batteries in the USA: high-energy electrode materials. J Power Sources 81:150Google Scholar
  23. 23.
    Whittingham MS (1976) Role of ternary phases in cathode reactions. J Electrochem Soc 123:315Google Scholar
  24. 24.
    Chernova NA, Roppolo M, Dillon AC, Whittingham MS (2009) Layered vanadium and molybdenum oxides: batteries and electrochromics. J Mater Chem 19:2526Google Scholar
  25. 25.
    Ostermann W (1922) Wiss Ind Hamburg 1:17Google Scholar
  26. 26.
    Müller E, Chem Z (1911) Ind Kolloide 8:302CrossRefGoogle Scholar
  27. 27.
    Gharbi N, R’Kha C, Ballutaud D, Michaud M, Livage J, Audiere JP, Shiffmacher G (1981) A new vanadium pentoxide amorphous phase. J Non-Cryst Solids 46:247Google Scholar
  28. 28.
    Sanchez C, Livage J, Audière JP, Madi A (1984) Influence of the quenching rate on the properties of amorphous V2O5 thin-films. J Non-Cryst Solids 65:285Google Scholar
  29. 29.
    Kittaka S, Sasaki S, Ogawa N, Uchida N (1988) Hydrous phase in the crystalline vanadium-oxide spheres. J Solis State Chem 76:40Google Scholar
  30. 30.
    Livage J (1999) Optical and electrical properties of vanadium oxides synthesized from alkoxides. Coord Chem Rev 190:391Google Scholar
  31. 31.
    Legendre JJ, Livage J (1983) Vanadium pentoxide gels. 1. Structural study by electron-diffraction. J Colloid Interface Sci 94:75Google Scholar
  32. 32.
    Pelletier O, Davidson P, Bourgaux C, Coulon C, Regnault S, Livage J (2000) A detailed study of the synthesis of aqueous vanadium pentoxide nematic gels. Langmuir 16:5295Google Scholar
  33. 33.
    Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition-metal oxides. Prog Solid State Chem 18:259Google Scholar
  34. 34.
    Legendre JJ, Livage J (1983) Structures of vanadium pentoxide gels. 1. Structural study by electron-diffraction. J Coll Int Sci 94:75Google Scholar
  35. 35.
    Legendre JJ, Livage J (1983) Structures of vanadium pentoxide gels. 2. Structural study by x-ray-diffraction. J Coll Bit Sci 94:84Google Scholar
  36. 36.
    Yao T, Oka Y, Yamamoto N (1992) Layered structures of vanadium pentoxide gels. Mater Res Bull 116:279Google Scholar
  37. 37.
    Giorgetti M, Passerini S, Smyrl WH (2000) Evidence of bylayer structure in V2O5 xerogel. Inorg Chem 39:1514Google Scholar
  38. 38.
    Bullot J, Gallais O, Gauthier M, Livage J (1980) Semiconducting properties of amorphous V2O5 layers deposited from gels. Appl Phys Lett 36:986Google Scholar
  39. 39.
    Bullot J, Cordier P, Gallais O, Gauthier M, Livage J (1981) Experimental-determination of the disorder energy in amorphous V2O5 Layers deposited from gels. Phys Status Solidi 68:357Google Scholar
  40. 40.
    Sanchez C, Morineau R, Livage J (1983) Electrical-conductivity of amorphous V2O5. Phys Status Solidi 76:661Google Scholar
  41. 41.
    Sanchez C, Babonneau F, Morineau R, Livage J (1983) Semiconducting properties of V2O5 gels. Phil Mag B 47:279Google Scholar
  42. 42.
    Livage J (1996) Sol-gel chemistry and electrochemical properties of vanadium oxide gels. Solid States Ionics 86:935Google Scholar
  43. 43.
    Anaissi FJ, Demets GJ-F, Alvarez EB, Politi MJ, Toma HE (2001) Long-term aging of vanadium(V) oxide xerogel precursor solutions: structural and electrochemical implications. Electrochim Acta 47:441Google Scholar
  44. 44.
    Bardoux P, Morineau R, Livage J (1988) Protonic conductivity in hydrates. Solid State Ionics 27:221Google Scholar
  45. 45.
    Bullot J, Cordier P, Gallais O, Gauthier M (1984) Thin-layers deposited from V2O5 gels. 2. An optical-absorption study. J Non-Cryst Solids 68:135Google Scholar
  46. 46.
    Baddour R, Pereira-Ramos JP, Messina R, Perichon J (1991) A thermodynamic, structural and kinetic-study of the electrochemical lithium intercalation into the xerogel V2O5 1.6 H2O in a propylene carbonate solution. J Electroanal Chem 314:81Google Scholar
  47. 47.
    Tipton AL, Passerini S, Owens BB, Smyrl WH (1996) Performance of lithium/V2O5 xerogel coin cells. J Electrochem Soc 143:3473Google Scholar
  48. 48.
    Park H-K, Smyrl WH, Ward MD (1995) V2O5 serogel films as intercalation hosts for lithium I. Insertion stoichiometry, site concentration, and specific energy. J Electrochem Soc 142:1068Google Scholar
  49. 49.
    Mège S, Levieux Y, Ansart F, Savariault JM, Rousset A (2000) Electrochemical properties of a new V2O5 xerogel. J Appl Electrochem 30:657Google Scholar
  50. 50.
    Parent MJ, Passerini S, Owens BB, Smyrl WH (1999) Composites of V2O5 aerogel and nickel fiber as high rate intercalation electrodes. J Electrochem Soc 146:1346Google Scholar
  51. 51.
    Dong W, Rolison DR, Dunn B (2000) Electrochemical properties of high surface area vanadium oxide aerogels. Electrochem Solid State Lett 3:457Google Scholar
  52. 52.
    Park HK, Smyrl WH (1994) V2O5 xerogel films as intercalation hosts for lithium. J Electrochem Soc 141:L25Google Scholar
  53. 53.
    Le DB, Passerini S, Tipton AL, Owens BB, Smyrl WH (1995) Aerogels and xerogels of V2O5 as intercalation hosts. J Electrochem Soc 142:L102Google Scholar
  54. 54.
    Owens BB, Passerini S, Smyrl WH (1999) Lithium ion insertion in porous metal oxides. Electrochim Acta 45:215Google Scholar
  55. 55.
    Passerini S, Smyrl WH, Berrettoni M, Tossici R, Rosolen M, Marassi R, Decker F (1996) XAS and electrochemical characterization of lithium intercalated V2O5 xerogels. Solid State Ionics 90:5Google Scholar
  56. 56.
    Le DB, Passerini S, Guo J, Ressler J, Owens BB, Smyrl WH (1996) High rate electrodes of V2O5 aerogel. J Electrochem Soc 143:2099Google Scholar
  57. 57.
    Lemordant D, Bouhaouss A, Aldebert P, Baffier N (1986) Intercalation of organic-solvents in the lamellar structure of V2O5 xerogels. J Chim Phys 83:105Google Scholar
  58. 58.
    Hupp J (2001) Emerging Nanoscience and Functional Artificial Nanoarchitectures. Interface 10:21Google Scholar
  59. 59.
    Lu Y, Lang Y, Sellinger A, Lu M, Huang J, Fan H, Haddad R, Lopez G, Burns AR, Sasaki DY, Shelnutt J, Brinker CJ (2001) Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 410:913Google Scholar
  60. 60.
    Chadwick AV (2000) Nanotechnology—Solid progress in ion conduction. Nature 408:925Google Scholar
  61. 61.
    Nazar LF, Goward G, Leroux F, Duncan M, Huang H, Kerr T, Gaubicher J (2001) Nanostructured materials for energy storage. Int J Inorg Mater 3:191Google Scholar
  62. 62.
    Bourgeat-Lami E (2002) Organic-inorganic nanostructured colloids. J Nanosci Nanotech 2:1Google Scholar
  63. 63.
    Maia DJ, De Paoli MA, Alves OL, Zarbin AJG, das Neves S (2000) Conductive polymer synthesis in solid host matrices. Quim Nova 23:204Google Scholar
  64. 64.
    Gimenez IF, Alves OL (1999) Formation of a novel polypyrrole porous phosphate glass ceramic nanocomposite. J Brazil Chem Soc 10:167Google Scholar
  65. 65.
    Kryszewski M (2000) Nanointercalates—novel class of materials with promissing properties. Synth Met 109:47Google Scholar
  66. 66.
    Wang Y, Cao G (2006) Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem Mater 18:2787Google Scholar
  67. 67.
    Patrissi CJ, Martin CR (1999) Sol-gel-based template synthesis and Li-insertion rate performance of nanostructured vanadium pentoxide. J Electrochem Soc 146:3176Google Scholar
  68. 68.
    Spahr ME, Bitterli PS, Nesper R, Haas O, Novák P (1999) Vanadium oxide nanotubes. A new nanostructured redox-active material for the electrochemical insertion of lithium. J Electrochem Soc 145:2780Google Scholar
  69. 69.
    Wang Y, Takahashi K, Shang H, Cao G (1995) Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays. J Phys Chem B 109:3085Google Scholar
  70. 70.
    Lee K, Wang Y, Cao G (2005) Dependence of electrochemical properties of vanadium oxide films on their nano- and microstructures. J Phys Chem B 109:16700Google Scholar
  71. 71.
    Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12:608Google Scholar
  72. 72.
    Kerr TA, Wu H, Nazar LF (1996) Concurrent polymerization and insertion of aniline in molybdenum trioxide: formation and properties of a [poly(aniline)]0.24MoO3 nanocomposite. Chem Mater 8:2005Google Scholar
  73. 73.
    Nazar LF, Wu H, Power WP(1993) Synthesis and properties of a new (PEO)x[Na(H2O)]0.25MoO3 nanocomposite. J Mater Chem 5:1985Google Scholar
  74. 74.
    Kanatzidis MG, Marcy HO, McCarthy WJ, Kannewurf CR, Marks TJ (1989) Insitu intercalative polymerization chemistry of feocl—generation and properties of novel, highly conductive inorganic-organic polymer microlaminates. Solid States Ionics 32:594Google Scholar
  75. 75.
    Maia DJ, Das Neves S, Alves OL, De Paoli MA (1999) Photoelectrochemical conversion by SnP-C/Fe/PAni: an integrated chemical system. Synth Met 102:1153Google Scholar
  76. 76.
    Maia DJ, Alves OL, De Paoli M-A (1997) Growth of linear polyaniline chains in a layered tin(IV) phosphonate host. Synth Met 90:37Google Scholar
  77. 77.
    Wu C-G, DeGroot DC, Marcy HO, Schindler JL, Kannewurf CR, Bakas T, Papaefthymiou V, Hirpo W, Yesinowski JP, Liu Y-J, Kanatzidis MG (1995) Reaction of aniline with feocl—formation and ordering of conducting polyaniline in a crystalline layered host. J Am Chem Soc 117:9229Google Scholar
  78. 78.
    Liu Y-J, Kanatzidis MG (1995) Postintercalative polymerization of aniline and its derivatives in layered metal phosphates. Chem Mater 7:1525Google Scholar
  79. 79.
    Vaia RA, Vasudevan S, Krawiec W, Scanlon LG, Giannelis EP (1995) New polymer electrolyte nanocomposites: melt intercalation of poly (ethylene oxide) in mica-type silicates. Adv Mater 7:154Google Scholar
  80. 80.
    Oriakhi CO, Lerner MM (1996) Rapid and quantitative displacement of poly(ethylene oxide) from MnPS3 and other layered hosts. Chem Mater 8:2016Google Scholar
  81. 81.
    Kerr TA, Leroux F, Nazar LF (1998) Surfactant-mediated incorporation of poly(p-phenylene) into MoO3. Chem Mater 10:2588Google Scholar
  82. 82.
    Schöllhorn R (1996) Intercalation systems as nanostructured functional materials. Chem Mater 8:1747Google Scholar
  83. 83.
    Lev O, Wu Z, Bharathi S, Glezer V, Modestov A, Gun J, Rabinovich L, Sampath S (1997) Sol-gel materials in electrochemistry. Chem Mater 9:2354Google Scholar
  84. 84.
    Harreld J, Wong HP, Dave BC, Dunn B, Nazar LF (1998) Synthesis and properties of polypyrrole vanadium oxide hybrid aerogels. J Non-Cryst Solids 225:319Google Scholar
  85. 85.
    Lira-Cantú M, Gómez-Romero P (1999) Synthesis and characterization of intercalate phases in the organic-inorganic polyaniline/V2O5 system. J Solid State Chem 147:601Google Scholar
  86. 86.
    Oliveira HP, Graeff CFO, Brunello CA, Guerra EM (2000) Electrochromic and conductivity properties: a comparative study between melanin-like/V2O5 center dot nH(2)O and polyaniline/V2O5 center dot nH(2)O hybrid materials. J Non-Cryst Solids 273:193Google Scholar
  87. 87.
    Posudievsky OY, Biskulova SA, Pokhodenko VD (2004) New hybrid guest-host nanocomposites based on polyaniline, poly(ethylene oxide) and V2O5. J Mater Chem 14:1419Google Scholar
  88. 88.
    Guerra EM, Brunello CA, Graeff CFO, Oliveira HP (2002) Synthesis, characterization, and conductivity studies of poly-o-methoxyaniline intercalated into V2O5 xerogel. J Solid State Chem 168:134Google Scholar
  89. 89.
    Demets GJ-F, Toma HE (2003) Strong electric fields promote oriented intercalative polymerization of pyrrole inside the lamellar matrices of vanadium pentoxide. Electrochem Commun 5:73Google Scholar
  90. 90.
    Yatabe T, Matsubayashi G (1996) Intercalation of 2-, 4-sulfanylpyridine, 2,2'- and 4,4'-dithiobispyridine into VOPO4, and gel-V2O5 interlayer spaces. J Mater Chem 6:1849Google Scholar
  91. 91.
    Wang J, Gonsalves KE (1999) A combinatorial approach for the synthesis and characterization of polymer/vanadium oxide nanocomposites. J Comb Chem 1:216Google Scholar
  92. 92.
    Kanatzidis MG, Wu C-G, Marcy HO, Kannewurf CR (1989) Conductive polymer/oxide bronze nanocomposites. Intercalated polythiophene in vanadium pentoxide (V2O5) xerogels. J Am Chem Soc 111:4139Google Scholar
  93. 93.
    Wu C-G, Kanatzidis MG, Marcy HO, DeGroot DC, Kannewurf CR (1989) Polym Mater Sci Eng 61:969Google Scholar
  94. 94.
    Liu Y-J, DeGroot DC, Schindler JL, Kannewurf CR, Kanatzidis MG (1993) Stabilization of anilinium in vanadium (V) oxide xerogel and its post-intercalative polymerization to poly (aniline) in air. J Chem Soc Chem Commun 593Google Scholar
  95. 95.
    Wu C-G, DeGroot DC, Marcy HO, Schindler JL, Kannewurf CR, Liu Y-J, Hirpo W, Kanatzidis MG (1996) The postintercalative intralamellar polymer growth in polyaniline/metal oxide nanocomposites is facilitated by molecular oxygen. Chem Mat 8:1992Google Scholar
  96. 96.
    Somani PR, Marimuthu R, Mandale AB (2001) Synthesis, characterization and charge transport mechanism in conducting polyaniline/V2O5 composites. Polymer 42:2991Google Scholar
  97. 97.
    Ferreira M, Zucolotto V, Huguenin F, Torresi RM, Oliveira ON Jr (2002) Layer-by-layer nanostructured hybrid films of polyaniline and vanadium oxide. J Nanosci Nanotech 2:29Google Scholar
  98. 98.
    Ferreira M, Huguenin F, Zucolotto V, da Silva JEP, de Torresi SIC, Temperini MLA, Torresi RM, Oliveira ON Jr (2003) Electroactive multilayer films of polyaniline and vanadium pentoxide. J Phys Chem B 107:8351Google Scholar
  99. 99.
    Li ZF, Ruckenstein E (2002) Intercalation of conductive polyaniline in the mesostructured V2O5. Langmuir 18:6956Google Scholar
  100. 100.
    Leroux F, Koene BE, Nazar LF (1996) Electrochemical lithium intercalation into a polyaniline/V2O5 nanocomposite. J Electrochem Soc 143:L181Google Scholar
  101. 101.
    Leurox F, Goward G, Power WP, Nazar LF (1997) Electrochemical Li insertion into conductive polymer/V2O5 nanocomposites. J Electrochem Soc 144:3886Google Scholar
  102. 102.
    Lira-Cantú M, Gómez-Romero P (1999) The organic-inorganic polyaniline/V2O5 system—Application as a high-capacity hybrid cathode for rechargeable lithium batteries. J Electrochem Soc 146:2029Google Scholar
  103. 103.
    Kuwabata S, Idzu T, Martin CR, Yoneyama H (1998) Charge-discharge properties of composite films of polyaniline and crystalline V2O5 particles. J Electrochem Soc 145:2707Google Scholar
  104. 104.
    Huguenin F, Torresi RM, Buttry DA (2002) Lithium electroinsertion into an inorganic-organic hybrid material composed from V2O5 and polyaniline J Electrochem Soc 149:A546Google Scholar
  105. 105.
    Varela H, Torresi RM (2000) Ionic exchange phenomena related to the redox processes of polyaniline in nonaqueous media. J Electrochem Soc 147:665Google Scholar
  106. 106.
    Lira-Cantú M, Gómez-Romero P  (1999) The polyaniline-V2O5 system: improvement as insertion electrode in lithium batteries. Int J Inorg Mat 1:111Google Scholar
  107. 107.
    Huguenin F, Torresi RM, Buttry DA, da Silva JEP, de Torresi SIC (2001) Electrochemical and Raman studies on a hybrid organic-inorganic nanocomposite of vanadium oxide and a sulfonated polyaniline. Electrochem Acta 46:3555Google Scholar
  108. 108.
    Varela H, Huguenin F, Malta M, Torresi RM (2002) Materials for cathodes of secondary lithium batteries. Quim Nova 25:287Google Scholar
  109. 109.
    McKinnon WR (1995) In: Bruce PG (ed) Solid state electrochemistry. Cambridge University Press, Cambridge, p 163Google Scholar
  110. 110.
    Huguenin F, Ticianelli EA, Torresi RM (2002) XANES study of polyaniline-V2O5 and sulfonated polyaniline-V2O5 nanocomposites. Electrochim Acta 47:3179Google Scholar
  111. 111.
    Holland GP, Yarger JL, Buttry DA, Huguenin F, Torresi RM (2003) Solid-state NMR study of ion-exchange processes in V2O5 xerogel, polyaniline/V2O5, and sulfonated polyaniline/V2O5 nanocomposites. J Electrochem Soc 150:A1718Google Scholar
  112. 112.
    Holland GP, Buttry DA, Yarger YL (2002) Li-7 NMR studies of electrochemically lithiated V2O5 xerogels. Chem Mater 14:3875Google Scholar
  113. 113.
    Huguenin F, Torresi RM (2008) Investigation of the electrical and electrochemical properties of nanocomposites from V2O5, polypyrrole, and polyaniline. J Phys Chem C 112:2202Google Scholar
  114. 114.
    Goward GR, Leroux F, Nazar LF (1998) Poly(pyrrole) and poly(thiophene)/vanadium oxide interleaved nanocomposites: positive electrodes for lithium batteries. Electrochim Acta 43:1307Google Scholar
  115. 115.
    Wong HP, Dave BC, Leroux F, Harreld J, Dunn B, Nazar LF (1998) Synthesis and characterization of polypyrrole vanadium pentoxide nanocomposite aerogels. J Mater Chem 8:1019Google Scholar
  116. 116.
    Huguenin F, Girotto EM, Torresi RM, Buttry DA (2002) Transport properties Of V2O5/polypyrrole nanocomposite prepared by a sol-gel alkoxide route. J Electroanal Chem 536:37Google Scholar
  117. 117.
    Harreld JH, Dunn B, Nazar LF (1999) Design and synthesis of inorganic-organic hybrid microstructures. Int J Inorg Mater 1:135Google Scholar
  118. 118.
    Demets GJF, Anaissi FJ, Toma HE (2000) Electrochemical properties of assembled polypyrrole/V2O5 xerogel films. Electrochim Acta 46:547Google Scholar
  119. 119.
    Posudievsky OY, Kozarenko OA, Dyadyun VS, Jorgensen SW, Spearot JA, Koshechko VG, Pokhodenko VD (2011) Characteristics of mechanochemically prepared host-guest hybrid nanocomposites of vanadium oxide and conducting polymers. J Power Sources 196:3331Google Scholar
  120. 120.
    Murugan AV, Kale BB, Kwon C-W, Campet G, Vijayamohanan K (2001) Synthesis and characterization of a new organo-inorganic poly(3,4-ethylene dioxythiophene) PEDOT/V2O5 nanocomposite by intercalation. J Mater Chem 11:2470Google Scholar
  121. 121.
    Kwon C-W, Murugan AV, Campet G, Portier J, Kale BB, Vijaymohanan K, Choy J-H (2002) Poly(3,4-ethylenedioxythiophene) V2O5 hybrids for lithium batteries. Electrochem Commun 4:384Google Scholar
  122. 122.
    Kuwubata S, Tomiyori M (2002) Rechargeable lithium battery cells fabricated using poly(methyl methacrylate) gel electrolyte and composite of V2O5 and polypyrrole. J Electrochem Soc 149:A988Google Scholar
  123. 123.
    Ponzio EA, Benedetti TM, Torresi RM (2007) Electrochemical and morphological stabilization of V2O5 nanofibers by the addition of polyaniline. Electrochim Acta 52:4419Google Scholar
  124. 124.
    Malta M, Torresi RM (2005) Electrochemical and kinetic studies of lithium intercalation in composite nanofibers of vanadium oxide/polyaniline. Electrochim Acta 50:5009Google Scholar
  125. 125.
    Chun-Guey W, Jiunn-Yih H, Shui-Sheng H (2001) Synthesis and characterization of processible conducting polyaniline/V2O5 nanocomposites. J Mater Chem 11:2061Google Scholar
  126. 126.
    Huguenin F, Girotto EM, Ruggeri G, Torresi RM (2003) Structural and electrochemical properties of nanocomposites formed by V2O5 and poly(3-alkylpyrroles). J Power Sources 114:133Google Scholar
  127. 127.
    Wang GC, Zhao J, Li XW, Li CZ, Yuan WK (2008) Synthesis and characterization of electrically conductive and fluorescent poly(N-[5-(8-hydroxyquinoline)methyl]aniline)/V2O5 xerogel hybrids. Synth Met 159:366Google Scholar
  128. 128.
    Liu M, Visco SJ, De Jonghe LC (1991) Novel solid redox polymerization electrodes—all-solid-state, thin-film, rechargeable lithium batteries. J Electrochem Soc 138:1891Google Scholar
  129. 129.
    Shouji E, Buttry DA (1999) New organic-inorganic nanocomposite materials for energy storage applications. Langmuir 15:669Google Scholar
  130. 130.
    Park N-G, Ryu KS, Park YJ, Kang MG, Kim D-K, Kang S-G, Kim KM, Chang S-H (2002) Synthesis and electrochemical properties of V2O5 intercalated with binary polymers. J Power Sources 103:273Google Scholar
  131. 131.
    Liu YJ, Schindler JL, Degroot DC, Kannewurf CR, Hirpo W, Kanatzidis MG (1996) Synthesis, structure, and reactions of poly(ethylene oxide) V2O5 intercalative nanocomposites. Chem Mater 8:525Google Scholar
  132. 132.
    Ruiz-Hitzky E, Aranda P, Casal B (1992) New polyoxyethylene intercalation materials in vanadium-oxide xerogel. J Mater Chem 2:581Google Scholar
  133. 133.
    Chen W, Xu Q, Hu YS, May LQ, Zhu QY (2002) Effect of modification by poly(ethylene oxide) on the reversibility of insertion/extraction of Li+ ion in V2O5 xerogel films. J Mater Chem 12:1926Google Scholar
  134. 134.
    Jin AP, Zhu QY, Chen W, Volkov VL, Zakharova GS, Liu HX, Zhou J, Xu Q (2007) Electrical and electrochromic characterization of poly (ethylene-oxide)/V2O5 xerogel films. Solid State Phenom 124:363Google Scholar
  135. 135.
    Jin A, Chen W, Zhou Q, Yang Y, Volkov VL, Zakharova GS (2008) Electrical and electrochemical characterization of poly (ethylene oxide)/V2O5 xerogel electrochromic films. Solid State Ionics 179:1256Google Scholar
  136. 136.
    Lutkenhaus JL, Hammond PT (2007) Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Mater 3:804Google Scholar
  137. 137.
    Galiote NA, Huguenin F (2007) Lithium ion diffusion into self-assembled films composed from WO3 and polyallylamine. J Phys Chem C 111:14911Google Scholar
  138. 138.
    Huguenin F, Ferreira M, Zucolotto V, Nart FC, Torresi RM, Oliveira ON (2004) Molecular-level manipulation of V2O5/polyaniline layer-by-layer films to control electrochromogenic and electrochemical properties. Chem Mater 16:2293Google Scholar
  139. 139.
    Huguenin F, Santos DS, Bassi A, Nart FC, Oliveira ON (2004) Charge storage capability in nanoarchitectures of V2O5/chitosan/poly (ethylene oxide) produced using the layer-by-layer technique. Adv Func Mater 14:985Google Scholar
  140. 140.
    Huguenin F, Nart FC, Gonzalez ER, Oliveira ON  (2004) Using the quadratic logistic equation to analyze intercalation of lithium ions in layer-by-layer V2O5 films. J Phys Chem B 108:18919Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Fritz Huguenin
    • 1
    Email author
  • Ana Rita Martins
    • 1
  • Roberto Manuel Torresi
    • 2
  1. 1.Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  2. 2.Instituto de Química, Universidade de São PauloSão PauloBrazil

Personalised recommendations