Nanoenergy pp 191-221 | Cite as

Developments in Electrocatalysts for Oxygen Reduction and Ethanol Oxidation

  • Fabio H. B. LimaEmail author
  • Daniel A. Cantane
  • F. E. R. Oliveira
  • Nelson A. Galiote


In this chapter, we review the development of electrocatalysts for electrochemical reactions that take place in low-temperature fuel cells. It is focused on the oxygen reduction reaction (ORR), and on the ethanol oxidation reaction (EOR) for proton exchange membrane fuel cells. In the case of the ORR, which is the bottleneck in the development of fuel cells, the major problem is the low platinum mass activity and its low long-term stability. For the ORR, it is reviewed the research activities of two new classes of electrocatalysts: (i) composed by platinum sub-monolayer deposited on metal nanoparticles, for which it is presented the activity—Pt d-band center correlations, and stability tests and; (ii) composed by nitrogen-coordinated iron–carbon nanostructures. In the second case, it is presented the last steps toward the understanding of the factors that govern their electrocatalytic activity and stability and, so, allowing the development of low-cost materials. For the ethanol electrochemical oxidation, it is showed the important parameters that permit high faradaic efficiency for CO2, formation on Pt-based electrocatalysts, which will serve as a guide for the next steps in the development of ethanol-powered fuel cells.



N.A. Galiote, F.E.E. Oliveira, D.A. Cantane, and F.H.B. Lima acknowledge financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP, and Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brazil.


  1. 1.
    Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29(11):1527–1537CrossRefGoogle Scholar
  2. 2.
    Kinoshita K (1992) Electrochemical oxygen technology. Wiley-Interscience, New York, p 431Google Scholar
  3. 3.
    Adzic R (1998) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis, vol 197. Wiley-VCH, New YorkGoogle Scholar
  4. 4.
    Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135CrossRefGoogle Scholar
  5. 5.
    Lima F, Zhang J, Shao M, Sasaki K, Vukmirovic M, Ticianelli E, Adzic R (2007) Catalytic activity-d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J Phys Chem C 111(1):404–410CrossRefGoogle Scholar
  6. 6.
    Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis–calculations and concepts. Adv Catal 45:71–129Google Scholar
  7. 7.
    Greeley J, Nørskov JK, Mavrikakis M (2002) Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem 53(1):319–348CrossRefGoogle Scholar
  8. 8.
    Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction-XRD, XAS, and electrochemical studies. J Phys Chem 99(13):4577–4589CrossRefGoogle Scholar
  9. 9.
    Lima FHB, Ticianelli EA (2004) Oxygen electrocatalysis on ultra-thin porous coating rotating ring/disk platinum and platinum-cobalt electrodes in alkaline media. Electrochim Acta 49(24):4091–4099CrossRefGoogle Scholar
  10. 10.
    Brankovic S, Wang J, Adzic R (2001) Pt submonolayers on Ru nanoparticles: a novel low Pt loading, high CO tolerance fuel cell electrocatalyst. Electrochem Solid-State Lett 4:A217CrossRefGoogle Scholar
  11. 11.
    Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang J, Nilekar AU, Mavrikakis M, Valerio J, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46(3):249–262CrossRefGoogle Scholar
  12. 12.
    Zhang J, Mo Y, Vukmirovic M, Klie R, Sasaki K, Adzic R (2004) Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd (111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108(30):10955–10964CrossRefGoogle Scholar
  13. 13.
    Kitchin JR, Nørskov JK, Barteau MA, Chen J (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 93(15):156801CrossRefGoogle Scholar
  14. 14.
    Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem 118(18):2963–2967CrossRefGoogle Scholar
  15. 15.
    Ruban A, Skriver HL, Nørskov JK (1999) Surface segregation energies in transition-metal alloys. Phys Rev B 59(24):15990CrossRefGoogle Scholar
  16. 16.
    Bardi U, Atrei A, Zanazzi E, Rovida G, Ross P (1990) Study of the reconstructed (001) surface of the Pt80Co20 alloy. Vacuum 41(1–3):437–440CrossRefGoogle Scholar
  17. 17.
    Mun BS, Watanabe M, Rossi M, Stamenkovic V, Markovic NM, Ross PN Jr (2005) A study of electronic structures of Pt3M (M = Ti,V,Cr,Fe,Co,Ni) polycrystalline alloys with valence-band photoemission spectroscopy. J Chem Phys 123:204717Google Scholar
  18. 18.
    Markovic N, Gasteiger H, Grgur B, Ross P (1999) Oxygen reduction reaction on Pt (111): effects of bromide. J Electroanal Chem 467(1–2):157–163CrossRefGoogle Scholar
  19. 19.
    Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis. Wiley, New YorkGoogle Scholar
  20. 20.
    Chorkendorff I, Niemantsverdriet JW, Wiley J (2003) Concepts of modern catalysis and kinetics, vol 138. Wiley Online Library, WeinheimGoogle Scholar
  21. 21.
    Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M (2002) Universality in heterogeneous catalysis. J Catal 209(2):275–278CrossRefGoogle Scholar
  22. 22.
    Clouser S, Huang J, Yeager E (1993) Temperature dependence of the Tafel slope for oxygen reduction on platinum in concentrated phosphoric acid. J Appl Electrochem 23(6):597–605CrossRefGoogle Scholar
  23. 23.
    Yeager E, Gervasio D, Razaq M, Razaq A, Tryk D (1993) Dioxygen reduction in various acid electrolytes. Serb J Chem Soc 57:819Google Scholar
  24. 24.
    Sidik RA, Anderson AB (2002) Density functional theory study of O2 electroreduction when bonded to a Pt dual site. J Electroanal Chem 528(1–2):69–76CrossRefGoogle Scholar
  25. 25.
    Sasaki K, Wang J, Balasubramanian M, McBreen J, Uribe F, Adzic R (2004) Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability. Electrochim Acta 49(22–23):3873–3877CrossRefGoogle Scholar
  26. 26.
    Gong K, Su D, Adzic RR (2010) Platinum-monolayer shell on AuNi0.5Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. J Am Chem Soc 845–910Google Scholar
  27. 27.
    Lima FHB, Zhang J, Shao M, Sasaki K, Vukmirovic M, Ticianelli E, Adzic R (2008) Pt monolayer electrocatalysts for O2 reduction: PdCo/C substrate-induced activity in alkaline media. J Solid State Electrochem 12(4):399–407CrossRefGoogle Scholar
  28. 28.
    Lima F, De Castro J, Santos L, Ticianelli E (2009) Electrocatalysis of oxygen reduction on carbon-supported Pt-Co nanoparticles with low Pt content. J Power Sources 190(2):293–300CrossRefGoogle Scholar
  29. 29.
    Obradovic M, Grgur B, Vracar LM (2003) Adsorption of oxygen containing species and their effect on oxygen reduction on Pt3Co electrode. J Electroanal Chem 548:69–78CrossRefGoogle Scholar
  30. 30.
    Zhang J, Sasaki K, Sutter E, Adzic R (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315(5809):220CrossRefGoogle Scholar
  31. 31.
    Xing Y, Cai Y, Vukmirovic MB, Zhou WP, Karan H, Wang JX, Adzic RR (2010) Enhancing oxygen reduction reaction activity via Pd–Au alloy sublayer mediation of Pt monolayer electrocatalysts. J Phys Chem Lett 1:3238–3242Google Scholar
  32. 32.
    Wang C, van der Vliet D, More KL, Zaluzec NJ, Peng S, Sun S, Daimon H, Wang G, Greeley J, Pearson J Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett 4–107. doi: 10.1021/nl102369k
  33. 33.
    Jasinski R (1964) A new fuel cell cathode catalyst. Nature 201:1212CrossRefGoogle Scholar
  34. 34.
    Jahnke H, Schönborn M, Zimmermann G (1976) Organic dyestuffs as catalysts for fuel cells. In: Boschke FL (ed) 61 topics in current chemistry—physical and chemical applications of dyestuffs. Springer, Berlin, pp 133–188CrossRefGoogle Scholar
  35. 35.
    Gupta S, Tryk D, Bae I, Aldred W, Yeager E (1989) Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J Appl Electrochem 19:19–27CrossRefGoogle Scholar
  36. 36.
    Wu G, Santandreu A, Kellogg W, Gupta S, Ogoke O, Zhang H, Wang H-L, Dai L (2016) Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transitionmetal addition. Nano Energy 29:83–110CrossRefGoogle Scholar
  37. 37.
    Choi CH, Baldizzone C, Grote J-P, Schuppert AK, Jaouen F, Mayrhofer KJJ (2015) Stability of Fe-N-C catalysts in acidic medium studied by operando spectroscopy. Angew Chem Int Ed 54:12753–12757CrossRefGoogle Scholar
  38. 38.
    Lalande G, Faubert G, Cote R, Guay D, Dodelet JP, Weng LT, Bertrand P (1996) Catalytic activity and stability of heat-treated iron phthalocyanines for the electroreduction of oxygen in polymer electrolyte fuel cells. J Power Sources 61:227CrossRefGoogle Scholar
  39. 39.
    Miller HA, Bellini M, Oberhauser W, Deng X, Chen H, He Q, Passaponti M, Innocenti M, Yang R, Sun F, Jiang Z, Vizza F (2016) Heat treated carbon supported iron(ii) phthalocyanine oxygen reduction catalysts: elucidation of the structure-activity relationship using X-ray absorption spectroscopy. Phys Chem Chem Phys 18:33142–33151CrossRefGoogle Scholar
  40. 40.
    Strickland K, Miner E, Jia Q, Tylus U, Ramaswamy N, Liang W, Sougrati M-T, Jaouen F, Mukerjee S (2015) Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metalnitrogen coordination. Nat Commun 6:7343CrossRefGoogle Scholar
  41. 41.
    Varnell JA, Tse ECM, Schulz CE, Fister TT, Haasch RT, Timoshenko J, Frenkel AI, Gewirth AA (2016) Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nat Commun 7:12582CrossRefGoogle Scholar
  42. 42.
    Noh SH, Seo MH, Kang J, Okajima T, Han B, Ohsaka T (2016) Towards a comprehensive understanding of FeCo coated with N-doped carbon as a stable bi-functional catalyst in acidic media. NPG Asia Mater 8:e312CrossRefGoogle Scholar
  43. 43.
    Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105(2):283–296CrossRefGoogle Scholar
  44. 44.
    Iwasita T, Nart F (1997) In situ infrared spectroscopy at electrochemical interfaces. Prog Surf Sci 55(4):271–340CrossRefGoogle Scholar
  45. 45.
    De Souza J, Queiroz S, Bergamaski K, Gonzalez E, Nart F (2002) Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques. J Phys Chem B 106(38):9825–9830CrossRefGoogle Scholar
  46. 46.
    Kowal A, Li M, Shao M, Sasaki K, Vukmirovic M, Zhang J, Marinkovic N, Liu P, Frenkel A, Adzic R (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 8(4):325–330CrossRefGoogle Scholar
  47. 47.
    Iwasita T, Pastor E (1994) A DEMS and FTIR spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochim Acta 39(4):531–537CrossRefGoogle Scholar
  48. 48.
    Xia X, Liess HD, Iwasita T (1997) Early stages in the oxidation of ethanol at low index single crystal platinum electrodes. J Electroanal Chem 437(1–2):233–240CrossRefGoogle Scholar
  49. 49.
    Souza JPI, Queiroz SL, Nart FC (2000) The use of mass spectrometry in electrochemical measurements-the DEMS technique. Quím Nova 23(3):384–391CrossRefGoogle Scholar
  50. 50.
    Jiang L, Colmenares L, Jusys Z, Sun G, Behm R (2007) Ethanol electro-oxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt: Sn ratio. Electrochim Acta 53(2):377–389CrossRefGoogle Scholar
  51. 51.
    Colmati F, Tremiliosi-Filho G, Gonzalez ER, Berná A, Herrero E, Feliu JM (2009) The role of the steps in the cleavage of the C–C bond during ethanol oxidation on platinum electrodes. Phys Chem Chem Phys 11(40):9114–9123CrossRefGoogle Scholar
  52. 52.
    Gao P, Chang SC, Zhou Z (1989) Electro-oxidation pathways of simple alcohols at platinum in pure nonaqueous and concentrated aqueous environments as studied by real-time FTIR spectroscopy. J Electroanal Chem 272(1–2):161–178CrossRefGoogle Scholar
  53. 53.
    Leung LWH, Chang SC, Weaver MJ (1989) Real-time FTIR spectroscopy as an electrochemical mechanistic probe: Electro-oxidation of ethanol and related species on well-defined Pt (111) surfaces. J Electroanal Chem 266(2):317–336CrossRefGoogle Scholar
  54. 54.
    Bruckenstein S, Gadde RR (1971) Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products. J Am Chem Soc 93:793–794CrossRefGoogle Scholar
  55. 55.
    Colmati F, Tremiliosi-Filho G, Gonzalez ER, Berná A, Herrero E, Feliu JM (2008) Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes. Faraday Discuss 140:379–397CrossRefGoogle Scholar
  56. 56.
    Cantane DA, Gonzalez E (2009) Mechanistic aspects of ethanol electro-oxidation in unsupported platinum nanoparticles. ECS Trans 25:1161–1168CrossRefGoogle Scholar
  57. 57.
    Giz M, Camara G (2009) The ethanol electro-oxidation reaction at Pt (1 1 1): the effect of ethanol concentration. J Electroanal Chem 625(2):117–122CrossRefGoogle Scholar
  58. 58.
    Camara G, Iwasita T (2005) Parallel pathways of ethanol oxidation: the effect of ethanol concentration. J Electroanal Chem 578(2):315–321CrossRefGoogle Scholar
  59. 59.
    Lai SCS, Koper MTM (2008) Electro-oxidation of ethanol and acetaldehyde on platinum single-crystal electrodes. Faraday Discuss 140:399–416CrossRefGoogle Scholar
  60. 60.
    Sun S, Halseid MC, Heinen M, Jusys Z, Behm R (2009) Ethanol electro-oxidation on a carbon-supported Pt catalyst at elevated temperature and pressure: a high-temperature/high-pressure DEMS study. J Power Sources 190(1):2–13CrossRefGoogle Scholar
  61. 61.
    Adzic R, Li M, Kowal A, Sasaki K, Marinkovic N, Su D, Korach E, Liu P (2010) Ethanol oxidation on the ternary Pt–Rh–SnO2/C electrocatalysts with varied Pt: Rh: Sn ratios. Electrochim Acta 55 (BNL–93871-2010-JA)Google Scholar
  62. 62.
    Lima F, Gonzalez E (2008) Ethanol electro-oxidation on carbon-supported Pt-Ru, Pt-Rh and Pt-Ru-Rh nanoparticles. Electrochim Acta 53(6):2963–2971CrossRefGoogle Scholar
  63. 63.
    Camara G, De Lima R, Iwasita T (2005) The influence of PtRu atomic composition on the yields of ethanol oxidation: a study by in situ FTIR spectroscopy. J Electroanal Chem 585(1):128–131CrossRefGoogle Scholar
  64. 64.
    Lima F, Profeti D, Lizcano-Valbuena W, Ticianelli E, Gonzalez E (2008) Carbon-dispersed Pt-Rh nanoparticles for ethanol electro-oxidation. Effect of the crystallite size and of temperature. J Electroanal Chem 617(2):121–129CrossRefGoogle Scholar
  65. 65.
    Houtman C, Barteau M (1991) Divergent pathways of acetaldehyde and ethanol decarbonylation on the Rh (111) surface. J Catal 130(2):528–546CrossRefGoogle Scholar
  66. 66.
    Sasaki K, Wang J, Balasubramanian M, McBreen J, Uribe F, Adzic R (2004) Ultra-low platinum content fuel cell anode electrocatalyst with a long-term performance stability. Electrochim Acta 49(22–23):3873–3877CrossRefGoogle Scholar
  67. 67.
    Kristian N, Wang X (2008) Ptshell-Aucore/C electrocatalyst with a controlled shell thickness and improved Pt utilization for fuel cell reactions. Electrochem Commun 10(1):12–15CrossRefGoogle Scholar
  68. 68.
    Shao M, Sasaki K, Marinkovic NS, Zhang L, Adzic RR (2007) Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports. Electrochem Commun 9(12):2848–2853CrossRefGoogle Scholar
  69. 69.
    Colmati F, Antolini E, Gonzalez E (2008) Effect of thermal treatment on phase composition and ethanol oxidation activity of a carbon supported Pt50Sn50 alloy catalyst. J Solid State Electrochem 12(5):591–599CrossRefGoogle Scholar
  70. 70.
    Lima FHB, Profeti D, Chatenet M, Riello D, Ticianelli E, Gonzalez E (2010) Electro-oxidation of ethanol on Rh/Pt and Ru/Rh/Pt sub-monolayers deposited on Au/C nanoparticles. Electrocatalysis 1(1):72–82CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Fabio H. B. Lima
    • 1
    Email author
  • Daniel A. Cantane
    • 2
  • F. E. R. Oliveira
    • 1
  • Nelson A. Galiote
    • 1
  1. 1.Institute of Chemistry of Sao CarlosUniversity of Sao PauloSao PauloBrazil
  2. 2.Battery LaboratoryItaipu Technological ParkFoz de IguaçuBrazil

Personalised recommendations