Nanoenergy pp 161-190 | Cite as

Biofuel Cells

  • Roberto A. S. Luz
  • Andressa R. Pereira
  • Rodrigo M. Iost
  • Frank N. CrespilhoEmail author


Biomass provides an abundant energy source on the Earth and it is stored primarily in the form of organic matter. Some strategies concern the use of enzymes and microorganisms as specific biocatalyst to generate electricity in the so-called biofuel cells (BFCs). In this chapter, we show important progress achieved until now about BFCs, as well as deep understanding of the biocatalytic behavior when the enzymes are immobilized onto solid supports (electrodes). Also the nature of the enzyme/electrode interfacial electron transfer is one of the fundamental opened questions under debate, since a large class of materials is used as components of electrodes. The understanding of these features is crucial for the efficiency of sustainable power energy generation for in vitro and in vivo technologies. Fundamentals of thermodynamics and kinetics of bioelectrodes will also be some of the current topics reviewed here. Further perspectives in the achievements of modern and miniaturized biodevices and bio-inspired systems will also be addressed.


  1. 1.
    Hubenova Y, Mitov M (2010) Bioelectrochemistry 78:57–61CrossRefGoogle Scholar
  2. 2.
    Giroud F, Gondran C, Gorgy K, Pellissier A, Lenouvel F, Cinquin P, Cosnier S (2011) J Power Sources 196:1329–1332CrossRefGoogle Scholar
  3. 3.
    Liu Y, Dong S (2007) Electrochem Commun 9:1423–1427CrossRefGoogle Scholar
  4. 4.
    Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biosens Bioelectron 21:2015–2045CrossRefGoogle Scholar
  5. 5.
    Davis F, Higson SPJ (2007) Biosens Bioelectron 22:1224–1235CrossRefGoogle Scholar
  6. 6.
    Iost RM, Crespilho FN, Kern K, Balasubramanian K (2016) Nanotechnology 27:29LT01Google Scholar
  7. 7.
    Katz E (2010) Electroanalysis 22:744–756CrossRefGoogle Scholar
  8. 8.
    Vielstich W, Yokokawa H, Gasteiger HA (2009) Handbook of fuel cells: fundamentals technology and applications. Wiley, USAGoogle Scholar
  9. 9.
    Yamamoto O (2000) Electrochim Acta 45:2423–2435CrossRefGoogle Scholar
  10. 10.
    Winter M, Brodd RJ (2004) Chem Rev 104:4245–4270Google Scholar
  11. 11.
    Heinzel A, Barragan V (1999) J Power Sources 84:70–74CrossRefGoogle Scholar
  12. 12.
    Patil A, Davis J (2011) Coord Chem Rev 255:1970–1980CrossRefGoogle Scholar
  13. 13.
    Armstrong FA, Wilson GS (2000) Electrochim Acta 45:2623–2645CrossRefGoogle Scholar
  14. 14.
    Galvani L (1972) De Viribus Electricitatis In Motu Musculari. Apud Societatem Typographicam, BolognaGoogle Scholar
  15. 15.
    Franks AE, Nevin KP (2010) Energies 3:899–919CrossRefGoogle Scholar
  16. 16.
    Logan BE, Hamelers B, Rozendal RA, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Environ Sci Technol 40:5181–5192CrossRefGoogle Scholar
  17. 17.
    Rabaey K, Verstraete W (2005) Trends Biotechnol 23:291–298CrossRefGoogle Scholar
  18. 18.
    Wang X, Sjöberg-Eerola P, Eriksson J-E, Bobacka J, Bergelin M (2010) Synth Met 160:1373–1381CrossRefGoogle Scholar
  19. 19.
    Zhao T (2009) Micro fuel cells: principles and applications. Academic Press, USAGoogle Scholar
  20. 20.
    Atanassov P, Apblett C, Banta S, Brozik S, Barton SC, Cooney M, Liaw BY, Mukerjee S, Minteer SD (2007) Interface-Electrochem Soc 16:28–31Google Scholar
  21. 21.
    Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD (2008) Energy Environ Sci 1:320–337CrossRefGoogle Scholar
  22. 22.
    Hao Yu E, Scott K (2010) Energies 3:23–42CrossRefGoogle Scholar
  23. 23.
    Minteer SD, Liaw BY, Cooney MJ (2007) Curr Opin Biotechnol 18:228–234CrossRefGoogle Scholar
  24. 24.
    Potter MC (1912) Proc Roy Soc B 84:260Google Scholar
  25. 25.
    Zebda A, Renaud L, Cretin M, Innocent C, Ferrigno R, Tingry S (2010) Sensors and Actuators B: Chemical 149(1):44–50Google Scholar
  26. 26.
    Barton SC, Gallaway J, Atanassov P (2004) Chem Rev 104:4867–4886CrossRefGoogle Scholar
  27. 27.
    Karyakin AA, Morozov SV, Karyakina EE, Varfolomeyev SD, Zorin NA, Cosnier S (2002) Electrochem Commun 4:417–420CrossRefGoogle Scholar
  28. 28.
    Arechederra RL, Treu BL, Minteer SD (2007) J Power Sources 173:156–161CrossRefGoogle Scholar
  29. 29.
    Yahiro A, Lee S, Kimble D (1964) Biochimica et Biophysica Acta (BBA)-Specialized Sect Biophys Subj 88:375–383Google Scholar
  30. 30.
    Nien P-C, Wang J-Y, Chen P-Y, Chen L-C, Ho K-C (2010) Biores Technol 101:5480–5486CrossRefGoogle Scholar
  31. 31.
    Courjean O, Gao F, Mano N (2009) Angew Chem Int Ed 48:5897–5899CrossRefGoogle Scholar
  32. 32.
    Gao F, Yan Y, Su L, Wang L, Mao L (2007) Electrochem Commun 9:989–996CrossRefGoogle Scholar
  33. 33.
    Yan Y, Zheng W, Su L, Mao L (2006) Adv Mater 18:2639–2643CrossRefGoogle Scholar
  34. 34.
    Atanassov P, Colon F, Rajendran V (2004) Proc Colloid Chem Div, Am Chem Soc, Wash DC 207Google Scholar
  35. 35.
    Cai C, Chen J (2004) Anal Biochem 332:75–83CrossRefGoogle Scholar
  36. 36.
    Tsujimura S, Kano K, Ikeda T (2002) Electrochemistry 70:940–942Google Scholar
  37. 37.
    Pizzariello A, Stred’ansky M, Miertuš S (2002) Bioelectrochemistry 56:99–105CrossRefGoogle Scholar
  38. 38.
    Katz E, Willner I, Kotlyar AB (1999) J Electroanal Chem 479:64–68CrossRefGoogle Scholar
  39. 39.
    Willner I, Katz E, Patolsky F, Buckmann AF (1998) J Chem Soc, Perkin Trans 2:1817–1822CrossRefGoogle Scholar
  40. 40.
    Willner I, Heleg-Shabtai V, Blonder R, Katz E, Tao G, Bückmann AF, Heller A (1996) J Am Chem Soc 118:10321–10322CrossRefGoogle Scholar
  41. 41.
    Milton RD, Cai R, Abdellaoui S, Leech D, De Lacey AL, Pita M, Minteer SD (2017) Angew Chem Int Ed 56:2680–2683CrossRefGoogle Scholar
  42. 42.
    Bachas LG, Law SA, Gavalas V, Ball JC, Andrews R (2002) Abstracts of papers, 223rd ACS national meeting. Orlando, FL, United StatesGoogle Scholar
  43. 43.
    Gregg BA, Heller A (1990) Anal Chem 62:258–263CrossRefGoogle Scholar
  44. 44.
    Bullen RA, Arnot T, Lakeman J, Walsh F (2006) Biosens Bioelectron 21:2015–2045CrossRefGoogle Scholar
  45. 45.
    Davis F, Higson SPJ (2007) Biosens Bioelectron 22:1224–1235CrossRefGoogle Scholar
  46. 46.
    Ticianelli E, Derouin C, Redondo A, Srinivasan S (1988) J Electrochem Soc 135:2209–2214CrossRefGoogle Scholar
  47. 47.
    Wang Z, Wang C, Chen K (2001) J Power Sources 94:40–50CrossRefGoogle Scholar
  48. 48.
    Topcagic S, Minteer SD (2006) Electrochim Acta 51:2168–2172CrossRefGoogle Scholar
  49. 49.
    Liu C, Alwarappan S, Chen Z, Kong X, Li C-Z (2010) Biosens Bioelectron 25:1829–1833CrossRefGoogle Scholar
  50. 50.
    Akers NL, Moore CM, Minteer SD (2005) Electrochim Acta 50:2521–2525CrossRefGoogle Scholar
  51. 51.
    Barrière F, Ferry Y, Rochefort D, Leech D (2004) Electrochem Commun 6:237–241CrossRefGoogle Scholar
  52. 52.
    Chen T, Barton SC, Binyamin G, Gao Z, Zhang Y, Kim H-H, Heller A (2001) J Am Chem Soc 123:8630–8631CrossRefGoogle Scholar
  53. 53.
    Coman V, Vaz-Domínguez C, Ludwig R, Harreither W, Haltrich D, De Lacey AL, Ruzgas T, Gorton L, Shleev S (2008) Phys Chem Chem Phys 10:6093–6096CrossRefGoogle Scholar
  54. 54.
    Kim H-H, Mano N, Zhang Y, Heller A (2003) J Electrochem Soc 150:A209–A213CrossRefGoogle Scholar
  55. 55.
    Yue PL, Lowther K (1986) Chem Eng J 33:B69–B77CrossRefGoogle Scholar
  56. 56.
    Siqueira JR Jr, Caseli L, Crespilho FN, Zucolotto V, Oliveira ON Jr (2010) Biosens Bioelectron 25:1254–1263CrossRefGoogle Scholar
  57. 57.
    Iost RM, Crespilho FN (2012) Biosens Bioelectron 31:1–10CrossRefGoogle Scholar
  58. 58.
    Iost RM, Madurro JM, Brito-Madurro AG, Nantes IL, Caseli L, Crespilho FN (2011) Int J Electrochem Sci 6:2965–2997Google Scholar
  59. 59.
    Crespilho FN, Iost RM, Travain SA, Oliveira ON Jr, Zucolotto V (2009) Biosens Bioelectron 24:3073–3077CrossRefGoogle Scholar
  60. 60.
    de Souza JC, Iost RM, Crespilho FN (2016) Biosens Bioelectron 77:860–865CrossRefGoogle Scholar
  61. 61.
    Luz RA, Pereira AR, de Souza JC, Sales FC, Crespilho FN (2014) ChemElectroChem 1:1751–1777CrossRefGoogle Scholar
  62. 62.
    Küchler A, Yoshimoto M, Luginbühl S, Mavelli F, Walde P (2016) Nat Nanotechnol 11:409–420CrossRefGoogle Scholar
  63. 63.
    Schmidt-Dannert C, Lopez-Gallego F (2016) Microb Biotechnol 9:601–609CrossRefGoogle Scholar
  64. 64.
    Tello A, Cao R, Marchant MJ, Gomez H (2016) Bioconjug Chem 27:2581–2591Google Scholar
  65. 65.
    Brena B, González-Pombo P, Batista-Viera F (2013) Immobil Enzymes Cells: Third Ed 15–31Google Scholar
  66. 66.
    Sirisha V, Jain A, Jain A (2016) Adv Food Nutr Res 79:179–211CrossRefGoogle Scholar
  67. 67.
    Ansari SA, Husain Q (2012) Biotechnol Adv 30:512–523CrossRefGoogle Scholar
  68. 68.
    Oliveira ON Jr, Iost RM, Siqueira JR Jr, Crespilho FN, Caseli L (2014) ACS Appl Mater Interfaces 6:14745–14766CrossRefGoogle Scholar
  69. 69.
    Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Biotechniques 37(790–796):798–802Google Scholar
  70. 70.
    Martins MVA, Pereira A, Luz RAS, Iost RM, Crespilho FN (2014) Phys Chem Chem Phys 17426–17436Google Scholar
  71. 71.
    Olyveira GM, Kim JH, Martins MV, Iost RM, Chaudhari KN, Yu J-S, Crespilho FN (2012) J Nanosci Nanotechnol 12:356–360CrossRefGoogle Scholar
  72. 72.
    Caseli L, Crespilho FN, Nobre TM, Zaniquelli MED, Zucolotto V, Oliveira ON (2008) J Colloid Interface Sci 319:100–108CrossRefGoogle Scholar
  73. 73.
    Crespilho FN, Emilia Ghica M, Florescu M, Nart FC, Oliveira ON Jr, Brett C (2006) Electrochem Commun 8:1665–1670CrossRefGoogle Scholar
  74. 74.
    Caseli L, Oliveira RG, Masui DC, Furriel RP, Leone FA, Maggio B, Zaniquelli MED (2005) Langmuir 21:4090–4095CrossRefGoogle Scholar
  75. 75.
    Hianik T, Šnejdárková M, Passechnik VI, Rehák M (1996) Bioelectrochem Bioenerg 41:221–225CrossRefGoogle Scholar
  76. 76.
    Cosnier S, Senillou A, Grätzel M, Comte P, Vlachopoulos N, Renault NJ, Martelet C (1999) J Electroanal Chem 469:176–181CrossRefGoogle Scholar
  77. 77.
    Naik RR, Tomczak MM, Luckarift HR, Spain JC, Stone MO (2004) Chem Commun 1684–1685Google Scholar
  78. 78.
    Abad JM, Vélez M, Santamaría C, Guisán JM, Matheus PR, Vázquez L, Gazaryan I, Gorton L, Gibson T, Fernández VM (2002) J Am Chem Soc 124:12845–12853CrossRefGoogle Scholar
  79. 79.
    Shin KM, Kim SI, So I, Kim SJ (2009) Electrochim Acta 54:3979–3983CrossRefGoogle Scholar
  80. 80.
    Kim J, Grate JW (2003) Nano Lett 3:1219–1222CrossRefGoogle Scholar
  81. 81.
    Scodeller P, Carballo R, Szamocki R, Levin L, Forchiassin F, Calvo EJ (2010) J Am Chem Soc 132:11132–11140CrossRefGoogle Scholar
  82. 82.
    Raitman OA, Katz E, Bückmann AF, Willner I (2002) J Am Chem Soc 124:6487–6496CrossRefGoogle Scholar
  83. 83.
    McCreery RL (2008) Chem Rev 108:2646–2687CrossRefGoogle Scholar
  84. 84.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Phys Chem Chem Phys 9:1276–1291CrossRefGoogle Scholar
  85. 85.
    Melanitis N, Tetlow PL, Galiotis C (1996) J Mater Sci 31:851–860CrossRefGoogle Scholar
  86. 86.
    Nagaoka T, Fukunaga T, Yoshino T, Watanabe I, Nakayama T, Okazaki S (1988) Anal Chem 60:2766–2769CrossRefGoogle Scholar
  87. 87.
    Iost RM, Crespilho FN, Zuccaro L, Yu HK, Wodtke AM, Kern K, Balasubramanian K (2014) Chemelectrochem 1:2070–2074CrossRefGoogle Scholar
  88. 88.
    Gao F, Viry L, Maugey M, Poulin P, Mano N (2010) Nature communications 1:2Google Scholar
  89. 89.
    Pereira AR, de Souza JCP, Iost RM, Sales FCPF, Crespilho FN (2016) J Electroanal Chem 780:396–406CrossRefGoogle Scholar
  90. 90.
    Zebda A, Gondran C, Le Goff A, Holzinger M, Cinquin P, Cosnier S (2011) Nat Commun 2Google Scholar
  91. 91.
    Kwon CH, Lee SH, Choi YB, Lee JA, Kim SH, Kim HH, Spinks GM, Wallace GG, Lima MD, Kozlov ME, Baughman RH (2014) Nat Commun 5Google Scholar
  92. 92.
    Plumere N, Rudiger O, Oughli AA, Williams R, Vivekananthan J, Poller S, Schuhmann W, Lubitz W (2014) Nat Chem 6:822–827CrossRefGoogle Scholar
  93. 93.
    Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K (2008) Appl Microbiol Biotechnol 78:409–418CrossRefGoogle Scholar
  94. 94.
    Chaudhuri SK, Lovley DR (2003) Nat Biotechnol 21:1229–1232CrossRefGoogle Scholar
  95. 95.
    He Z, Angenent LT (2006) Electroanalysis 18:2009–2015CrossRefGoogle Scholar
  96. 96.
    Logan BE (2009) Nat Rev Microbiol 7:375–381CrossRefGoogle Scholar
  97. 97.
    Logan BE, Regan JM (2006) Trends Microbiol 14:512–518CrossRefGoogle Scholar
  98. 98.
    Montanha EA, Pavinatto FJ, Caseli L, Kaczmarek O, Liebscher J, Huster D, Oliveira ON Jr (2010) Colloids Surf, B 77:161–165CrossRefGoogle Scholar
  99. 99.
    Oh S, Min B, Logan BE (2004) Environ Sci Technol 38:4900–4904CrossRefGoogle Scholar
  100. 100.
    Sharma V, Kundu PP (2010) Enzyme Microbiol Technol 47:179–188Google Scholar
  101. 101.
    You S, Zhao Q, Zhang J, Liu H, Jiang J, Zhao S (2008) Biosens Bioelectron 23:1157–1160CrossRefGoogle Scholar
  102. 102.
    Lee JW, Kjeang E (2010) Biomicrofluidics 4:041301Google Scholar
  103. 103.
    Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh SE (2015) Alex Eng J 54:745–756CrossRefGoogle Scholar
  104. 104.
    Kerres JA (2001) J Membr Sci 185:3–27CrossRefGoogle Scholar
  105. 105.
    Coman V, Vaz-Domínguez C, Ludwig R, Harreither W, Haltrich D, Lacey ALD, Ruzgas T, Gorton L, Shleev S (2008) Phys Chem Chem Phys 10:6093–6096CrossRefGoogle Scholar
  106. 106.
    Ticianelli EA, Derouin CR, Redondo A, Srinivasan S (1988) J Electrochem Soc 135:2209CrossRefGoogle Scholar
  107. 107.
    Du Z, Li H, Gu T (2007) Biotechnol Adv 25:464–482CrossRefGoogle Scholar
  108. 108.
    Kim J, Jia H, Wang P (2006) Biotechnol Adv 24:296–308CrossRefGoogle Scholar
  109. 109.
    Brett CMA, Brett AMO, Brett A (1996) Electroquímica: princípios, métodos e aplicações, vol 1. Almedina, CoimbraGoogle Scholar
  110. 110.
    Barton SC, Gallaway J, Atanassov P (2004) Chem Rev 104:4867–4886CrossRefGoogle Scholar
  111. 111.
    Halamkova L, Halamek J, Bocharova V, Szczupak A, Alfonta L, Katz E (2012) J Am Chem Soc 134:5040–5043CrossRefGoogle Scholar
  112. 112.
    Moore CM, Minteer SD, Martin RS (2005) Lab Chip 5:218–225CrossRefGoogle Scholar
  113. 113.
    Szczupak A, Halamek J, Halamkova L, Bocharova V, Alfonta L, Katz E (2012) Energy Environ Sci 5:8891–8895CrossRefGoogle Scholar
  114. 114.
    Zebda A, Cosnier S, Alcaraz J-P, Holzinger M, Le Goff A, Gondran C, Boucher F, Giroud F, Gorgy K, Lamraoui H, Cinquin P (2013) Scientific reports 3:1516Google Scholar
  115. 115.
    Kharkats YI, Sokirko AV, Bark FH (1995) Electrochim Acta 40:247–252CrossRefGoogle Scholar
  116. 116.
    Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Biosens Bioelectron 18:327–334CrossRefGoogle Scholar
  117. 117.
    Crespilho FN, Ghica ME, Zucolotto V, Nart FC, Oliveira ON Jr, Brett C (2007) Electroanalysis 19:805–812CrossRefGoogle Scholar
  118. 118.
    Qiu JD, Zhou WM, Guo J, Wang R, Liang RP (2009) Anal Biochem 385:264–269CrossRefGoogle Scholar
  119. 119.
    Colvin VL (2003) Nat Biotechnol 21:1166–1170CrossRefGoogle Scholar
  120. 120.
    Huczko A (2000) Appl Phys A Mater Sci Process 70:365–376CrossRefGoogle Scholar
  121. 121.
    Park MS, Kang YM, Wang GX, Dou SX, Liu HK (2008) Adv Func Mater 18:455–461CrossRefGoogle Scholar
  122. 122.
    Holland JT, Lau C, Brozik S, Atanassov P, Banta S (2011) J Am Chem Soc 133:19262–19265CrossRefGoogle Scholar
  123. 123.
    Jose MV, Marx S, Murata H, Koepsel RR, Russell AJ (2012) Carbon 50:4010–4020CrossRefGoogle Scholar
  124. 124.
    Zhao G-C, Yin Z-Z, Zhang L, Wei X-W (2005) Electrochem Commun 7:256–260CrossRefGoogle Scholar
  125. 125.
    Zuo X, He S, Li D, Peng C, Huang Q, Song S, Fan C (2009) Langmuir 26:1936–1939CrossRefGoogle Scholar
  126. 126.
    Luz RA, Crespilho FN (2016) RSC Adv 6:62585–62593CrossRefGoogle Scholar
  127. 127.
    Moghaddam AB, Ganjali MR, Dinarvand R, Razavi T, Saboury AA, Moosavi-Movahedi AA, Norouzi P (2008) J Electroanal Chem 614:83–92CrossRefGoogle Scholar
  128. 128.
    Mohanpuria P, Rana NK, Yadav SK (2008) J Nanopart Res 10:507–517CrossRefGoogle Scholar
  129. 129.
    Iijima S (1991) Nature 354:56–58Google Scholar
  130. 130.
    Baughman RH, Zakhidov AA, De Heer WA (2002) Science 297:787CrossRefGoogle Scholar
  131. 131.
    Thostenson ET, Ren Z, Chou TW (2001) Compos Sci Technol 61:1899–1912CrossRefGoogle Scholar
  132. 132.
    Wang J (2005) Electroanalysis 17:7–14CrossRefGoogle Scholar
  133. 133.
    Banks CE, Compton RG (2005) Analyst 130:1232–1239CrossRefGoogle Scholar
  134. 134.
    Banks CE, Crossley A, Salter C, Wilkins SJ, Compton RG (2006) Angew Chem Int Ed 45:2533–2537CrossRefGoogle Scholar
  135. 135.
    Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) ChemInform 36Google Scholar
  136. 136.
    Streeter I, Wildgoose GG, Shao L, Compton RG (2008) Sens Actuators B: Chem 133:462–466CrossRefGoogle Scholar
  137. 137.
    Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Microchim Acta 152:187–214CrossRefGoogle Scholar
  138. 138.
    Britto PJ, Santhanam KSV, Ajayan PM (1996) Bioelectrochem Bioenerg 41:121–125CrossRefGoogle Scholar
  139. 139.
    Zhang WD, Zhao YD, Chen H, Luo QM (2002) Anal Sci 18:939–941CrossRefGoogle Scholar
  140. 140.
    Guiseppi-Elie A, Lei C, Baughman RH (2002) Nanotechnology 13:559CrossRefGoogle Scholar
  141. 141.
    Xue H, Sun W, He B, Shen Z (2003) Synth Met 135:831–832CrossRefGoogle Scholar
  142. 142.
    Zheng W, Li Q, Su L, Yan Y, Zhang J, Mao L (2006) Electroanalysis 18:587–594CrossRefGoogle Scholar
  143. 143.
    Geim AK, Novoselov KS (2007) Nat Mater 6:183–191CrossRefGoogle Scholar
  144. 144.
    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S (2004) Nature 430:870–873CrossRefGoogle Scholar
  145. 145.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669CrossRefGoogle Scholar
  146. 146.
    Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101–105CrossRefGoogle Scholar
  147. 147.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen SBT, Ruoff RS (2006) Nature 442:282–286CrossRefGoogle Scholar
  148. 148.
    Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) TrAC Trends Analytical Chemistry 29:964–965Google Scholar
  149. 149.
    Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Biosens Bioelectron 25:901–905CrossRefGoogle Scholar
  150. 150.
    Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Anal Chem 81:2378–2382CrossRefGoogle Scholar
  151. 151.
    Wu H, Wang J, Kang X, Wang C, Wang D, Liu J, Aksay IA, Lin Y (2009) Talanta 80(1):403–406Google Scholar
  152. 152.
    Dan Y, Lu Y, Kybert NJ, Luo Z, Johnson ATC (2009) Nano Lett 9:1472–1475CrossRefGoogle Scholar
  153. 153.
    Fowler JD, Allen MJ, Tung VC, Yang Y, Kaner RB, Weiller BH (2009) ACS Nano 3:301–306CrossRefGoogle Scholar
  154. 154.
    Liu C, Alwarappan S, Chen Z, Kong X, Li CZ (2010) Biosens Bioelectron 25:1829–1833CrossRefGoogle Scholar
  155. 155.
    Logan B, Cheng S, Watson V, Estadt G (2007) Environ Sci Technol 41:3341–3346CrossRefGoogle Scholar
  156. 156.
    Ramanavicius A, Kausaite A, Ramanaviciene A (2005) Biosens Bioelectron 20:1962–1967CrossRefGoogle Scholar
  157. 157.
    Ivnitski D, Branch B, Atanassov P, Apblett C (2006) Electrochem Commun 8:1204–1210CrossRefGoogle Scholar
  158. 158.
    Rusling JF, Wang B, S-E. Yun (2008) Electrochemistry of redox enzymes. In: Bioelectrochemistry: fundamentals, experimental techniques and applications. Wiley, USA, pp 39–85Google Scholar
  159. 159.
    Colmati F, Yoshioka SA, Silva V, Varela H, Gonzalez ER (2007) Int J Electrochem Sci 2:195–202Google Scholar
  160. 160.
    Ramanavicius A, Kausaite A, Ramanaviciene A (2008) Biosens Bioelectron 24:761–766CrossRefGoogle Scholar
  161. 161.
    Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002) Biotechnol Prog 18:1027–1032CrossRefGoogle Scholar
  162. 162.
    Bunte C, Prucker O, König T, Rühe J (2009) Langmuir 26(8):6019–6027Google Scholar
  163. 163.
    Taqieddin E, Amiji M (2004) Biomaterials 25:1937–1945CrossRefGoogle Scholar
  164. 164.
    Rege K, Raravikar NR, Kim DY, Schadler LS, Ajayan PM, Dordick JS (2003) Nano Lett 3:829–832CrossRefGoogle Scholar
  165. 165.
    Wang P, Sheng Dai SD, Tsao AY, Davison BH (2001) Biotechnol Bioeng 74:249–255CrossRefGoogle Scholar
  166. 166.
    de la Garza L, Jeong G, Liddell PA, Sotomura T, Moore TA, Moore AL, Gust D (2003) J Phys Chem B 107:10252–10260CrossRefGoogle Scholar
  167. 167.
    Daniel DK, Das Mankidy B, Ambarish K, Manogari R (2009) Int J Hydrogen Energy 34:7555–7560CrossRefGoogle Scholar
  168. 168.
    Palmore GTR, Kim H-H (1999) J Electroanal Chem 464:110–117CrossRefGoogle Scholar
  169. 169.
    Alferov SV, Tomashevskaya LG, Ponamoreva ON, Bogdanovskaya VA, Reshetilov AN (2006) Russ J Electrochem 42:403–404CrossRefGoogle Scholar
  170. 170.
    Inamuddin KM, Kim SI, So I, Kim SJ (2008) Electrochim Acta 54:3979–3983CrossRefGoogle Scholar
  171. 171.
    Miyake T, Oike M, Yoshino S, Yatagawa Y, Haneda K, Kaji H, Nishizawa M (2009) Chem Phys Lett 480:123–126CrossRefGoogle Scholar
  172. 172.
    Campbell AS, Murata H, Carmali S, Matyjaszewski K, Islam MF, Russell AJ (2016) Biosens Bioelectron 86:446–453CrossRefGoogle Scholar
  173. 173.
    Yahiro AT, Lee SM, Kimble DO (1964) Biochimica et Biophysica Acta (BBA)-Specialized Section on Biophysical Subjects 88:375–383Google Scholar
  174. 174.
    Ivanov I, Vidaković-Koch T, Sundmacher K (2010) Energies 3:803–846Google Scholar
  175. 175.
    Bullock C (1995) Sci Prog 78:119–134Google Scholar
  176. 176.
    Kennedy JF, Melo EHM, Jumel K (1990) Chem Eng Prog 86:81–89Google Scholar
  177. 177.
    Tischer W, Kasche V (1999) Trends Biotechnol 17:326–335CrossRefGoogle Scholar
  178. 178.
    Tischer W, Wedekind F (1999) Biocatalysis-From Discov Appl 95–126Google Scholar
  179. 179.
    Heller A (1992) J Phys Chem 96:3579–3587Google Scholar
  180. 180.
    Okawa Y, Nagano M, Hirota S, Kobayashi H, Ohno T, Watanabe M (1999) Biosens Bioelectron 14:229–235CrossRefGoogle Scholar
  181. 181.
    Smolander M, Livio HL, Räsänen L (1992) Biosens Bioelectron 7:637–643CrossRefGoogle Scholar
  182. 182.
    Wang J, Mo JW, Li S, Porter J (2001) Anal Chim Acta 441:183–189CrossRefGoogle Scholar
  183. 183.
    Picioreanu C, Katuri KP, van Loosdrecht MCM, Head IM, Scott K (2010) J Appl Electrochem 40:151–162CrossRefGoogle Scholar
  184. 184.
    Hodak J, Etchenique R, Calvo EJ, Singhal K, Bartlett PN (1997) Langmuir 13:2708–2716CrossRefGoogle Scholar
  185. 185.
    Karyakin AA, Gitelmacher OV, Karyakina EE (1995) Anal Chem 67:2419–2423CrossRefGoogle Scholar
  186. 186.
    Ricci F, Palleschi G (2005) Biosens Bioelectron 21:389–407CrossRefGoogle Scholar
  187. 187.
    Nakano K, Nakamura K, Iwamoto K, Soh N, Imato T (2009) J Electroanal Chem 628:113–118CrossRefGoogle Scholar
  188. 188.
    Nien PC, Wang JY, Chen PY, Chen LC, Ho KC (2010) Biores Technol 101:5480–5486CrossRefGoogle Scholar
  189. 189.
    Kealy TJ, Pauson PL (1951) Nature 168:1039–1040CrossRefGoogle Scholar
  190. 190.
    Merchant SA, Tran TO, Meredith MT, Cline TC, Glatzhofer DT, Schmidtke DW (2009) Langmuir 25:7736–7742CrossRefGoogle Scholar
  191. 191.
    Ishige Y, Takeda S, Kamahori M (2010) Biosens Bioelectron 26(4):1366–1372Google Scholar
  192. 192.
    Kato R, Sato A, Yoshino D, Hattori T (2011) Anal Sci 27:61–66CrossRefGoogle Scholar
  193. 193.
    Kwon SJ, Yang H, Jo K, Kwak J (2008) The Analyst 133:1599–1604CrossRefGoogle Scholar
  194. 194.
    Qiu JD, Liang RP, Wang R, Fan LX, Chen YW, Xia XH (2009) Biosens Bioelectron 25:852–857CrossRefGoogle Scholar
  195. 195.
    De Cuyper M, Joniau M (1992) Biotechnol Appl Biochem 16:201Google Scholar
  196. 196.
    Mukhopadhyay K, Phadtare S, Vinod VP, Kumar A, Rao M, Chaudhari RV, Sastry M (2003) Langmuir 19:3858–3863CrossRefGoogle Scholar
  197. 197.
    Zhang S, Wang N, Yu H, Niu Y, Sun C (2005) Bioelectrochemistry 67:15–22CrossRefGoogle Scholar
  198. 198.
    Crespilho FN, Ghica ME, Gouveia-Caridade C, Oliveira ON Jr, Brett C (2008) Talanta 76:922–928CrossRefGoogle Scholar
  199. 199.
    Siqueira JR Jr, Crespilho FN, Zucolotto V, Oliveira ON Jr (2007) Electrochem Commun 9:2676–2680CrossRefGoogle Scholar
  200. 200.
    Katz E, Filanovsky B, Willner I (1999) New J Chem 23:481–487CrossRefGoogle Scholar
  201. 201.
    Fu C, Yang W, Chen X, Evans DG (2009) Electrochem Commun 11:997–1000CrossRefGoogle Scholar
  202. 202.
    Wang D, Chen L (2009) Electrochim Acta 54:4316–4320CrossRefGoogle Scholar
  203. 203.
    Sales FCPF, Iost RM, Martins MVA, Almeida MC, Crespilho FN (2013) Lab Chip 13:468–474CrossRefGoogle Scholar
  204. 204.
    Pereira AR, de Souza JCP, Gonçalves AD, Pagnoncelli KC, Crespilho FN (2017) J Braz Chem Soc 28:1698–1707Google Scholar
  205. 205.
    Lewis K (1966) Microbiol Mol Biol Rev 30:101Google Scholar
  206. 206.
    Park DH, Zeikus JG (2000) Appl Environ Microbiol 66:1292CrossRefGoogle Scholar
  207. 207.
    Ishikawa M, Yamamura S, Takamura Y, Sode K, Tamiya E, Tomiyama M (2006) Int J Hydrogen Energy 31:1484–1489CrossRefGoogle Scholar
  208. 208.
    Shukla A, Suresh P, Berchmans S, Rajendran A (2004) Curr Sci 87:455–468Google Scholar
  209. 209.
    Cheng S, Liu H, Logan BE (2006) Environ Sci Technol 40:364–369CrossRefGoogle Scholar
  210. 210.
    Schröder U, Nießen J, Scholz F (2003) Angew Chem 115:2986–2989CrossRefGoogle Scholar
  211. 211.
    Fishilevich S, Amir L, Fridman Y, Aharoni A, Alfonta L (2009) J Am Chem Soc 131:12052–12053CrossRefGoogle Scholar
  212. 212.
    Makarieva AM, Gorshkov VG, Li BL, Chown SL, Reich PB, Gavrilov VM (2008) P Natl Acad Sci U S A 105:16994–16999CrossRefGoogle Scholar
  213. 213.
    Zhirnov VV, Cavin RK (2015) Microsystems for bioelectronics: scaling and performance limits, William AndrewGoogle Scholar
  214. 214.
    Sarpeshkar R (2010) Cambridge University Press, CambridgeGoogle Scholar
  215. 215.
    Willner I, Katz E (2000) Angew Chem Int Edit 39:1180–1218CrossRefGoogle Scholar
  216. 216.
    Lau C, Moehlenbrock MJ, Arechederra RL, Falase A, Garcia K, Rincon R, Minteer SD, Banta S, Gupta G, Babanova S, Atanassov P (2015) Int J Hydrogen Energy 40:14661–14666CrossRefGoogle Scholar
  217. 217.
    Hannan MA, Mutashar S, Samad SA, Hussain A (2014) Biomed Eng Online 13(1):79Google Scholar
  218. 218.
    Hayes DL, Furman S (2004) J Cardiovasc Electr 15:619–627CrossRefGoogle Scholar
  219. 219.
    Cosnier S, Le Goff A, Holzinger M (2014) Electrochem Commun 38:19–23CrossRefGoogle Scholar
  220. 220.
    Lee K, Park J, Lee MS, Kim J, Hyun BG, Kang DJ, Na K, Lee CY, Bien F, Park JU (2014) Nano Lett 14:2647–2654CrossRefGoogle Scholar
  221. 221.
    Horecker BL (1965) J Chem Educ, 42(5):244Google Scholar
  222. 222.
    Katz E (2015) 6th Ieee international workshop on advances in sensors and interfaces (Iwasi) pp 2–13Google Scholar
  223. 223.
    Katz E (2010) Electroanalysis 22:744–756CrossRefGoogle Scholar
  224. 224.
    Cracknell JA, Vincent KA, Armstrong FA (2008) Chem Rev 108:2439–2461CrossRefGoogle Scholar
  225. 225.
    Zhang YJ, Chu M, Yang L, Tan YM, Deng WF, Ma M, Su XL, Xie QJ (2014) ACS Appl Mater Interfaces 6:12808–12814CrossRefGoogle Scholar
  226. 226.
    Castorena-Gonzalez JA, Foote C, MacVittie K, Halamek J, Halamkova L, Martinez-Lemus LA, Katz E (2013) Electroanalysis 25:1579–1584CrossRefGoogle Scholar
  227. 227.
    Yehezkeli O, Tel-Vered R, Reichlin S, Willner I (2011) ACS Nano 5:2385–2391CrossRefGoogle Scholar
  228. 228.
    Ivnitski D, Atanassov P, Apblett C (2007) Electroanalysis 19:1562–1568CrossRefGoogle Scholar
  229. 229.
    Flexer V, Durand F, Tsujimura S, Mano N (2011) Anal Chem 83:5721–5727CrossRefGoogle Scholar
  230. 230.
    Tsujimura S, Murata K, Akatsuka W (2014) J Am Chem Soc 136:14432–14437CrossRefGoogle Scholar
  231. 231.
    MacVittie K, Halamek J, Halamkova L, Southcott M, Jemison WD, Lobeld R, Katz E (2013) Energy Environ Sci 6:81–86CrossRefGoogle Scholar
  232. 232.
    Rasmussen M, Ritzmann RE, Lee I, Pollack AJ, Scherson D (2012) J Am Chem Soc 134:1458–1460CrossRefGoogle Scholar
  233. 233.
    Rapoport BI, Kedzierski JT, Sarpeshkar R (2012) Plos One 7(6)Google Scholar
  234. 234.
    MacVittie K, Conlon T, Katz E (2015) Bioelectrochemistry 106:28–33CrossRefGoogle Scholar
  235. 235.
    Banavar JR, Maritan A (2007) Annu Rev Bioph Biom 36:261–280CrossRefGoogle Scholar
  236. 236.
    Baker D (2000) Nature 405:39–42CrossRefGoogle Scholar
  237. 237.
    Bernal JD (1939) Nature 143:663–667CrossRefGoogle Scholar
  238. 238.
    Gutzler R, Stepanow S, Grumelli D, Lingenfelder M, Kern K (2015) Acc Chem Res 48:2132–2139CrossRefGoogle Scholar
  239. 239.
    de Silva N, Ha JM, Solovyov A, Nigra MM, Ogino I, Yeh SW, Durkin KA, Katz A (2010) Nat Chem 2:1062–1068CrossRefGoogle Scholar
  240. 240.
    Deuss PJ, den Heeten R, Laan W, Kamer PCJ (2011) Chem-Eur J 17:4680–4698CrossRefGoogle Scholar
  241. 241.
    Shemetov AA, Nabiev I, Sukhanova A (2012) ACS Nano 6:4585–4602CrossRefGoogle Scholar
  242. 242.
    Lehn JM (2007) Chem Soc Rev 36:151–160CrossRefGoogle Scholar
  243. 243.
    Alencar WS, Crespilho FN, Martins MVA, Zucolotto V, Oliveira ON, Silva WC (2009) Phys Chem Chem Phys 11:5086–5091CrossRefGoogle Scholar
  244. 244.
    Decher G (1997) Science 277:1232CrossRefGoogle Scholar
  245. 245.
    Blodgett KB (1934) J Am Chem Soc 56:495Google Scholar
  246. 246.
    Blodgett KB (1935) J Am Chem Soc 57:1007–1022CrossRefGoogle Scholar
  247. 247.
    Wang Y, Zeiri O, Raula M, Le Ouay B, Stellacci F, Weinstock IA (2016) Nat Nanotechnol 12(2):170–176Google Scholar
  248. 248.
    Pereira AR, Iost RM, Martins MVA, Yokomizo CH, da Silva WC, Nantes IL, Crespilho FN (2011) Phys Chem Chem Phys 13:12155–12162CrossRefGoogle Scholar
  249. 249.
    Martins MVA, Bonfin C, da Silva WC, Crespilho FN (2010) Electrochem Commun 12:1509–1512Google Scholar
  250. 250.
    Sokic-Lazic D, Minteer SD (2008) Biosens Bioelectron 24:939–944CrossRefGoogle Scholar
  251. 251.
    Vazquez-Gonzalez M, Liao WC, Cazelles R, Wang S, Yu X, Gutkin V, Willner I (2017) ACS nano 11(3):3247–3253Google Scholar
  252. 252.
    Wang S, Cazelles R, Liao WC, Vazquez-Gonzalez M, Zoabi A, Abu-Reziq R, Willner I (2017) Nano Lett 17:2043–2048CrossRefGoogle Scholar
  253. 253.
    Bouju X, Mattioli C, Franc G, Pujol A, Gourdon A (2017) Chem Rev 117(3):1407–1444Google Scholar
  254. 254.
    Barth JV, Costantini G, Kern K (2005) Nature 437:671–679CrossRefGoogle Scholar
  255. 255.
    Barile CJ, Tse ECM, Li Y, Sobyra TB, Zimmerman SC, Hosseini A, Gewirth AA (2014) Nat Mater 13:619–623CrossRefGoogle Scholar
  256. 256.
    Tse EC, Barile CJ, Kirchschlager NA, Li Y, Gewargis JP, Zimmerman SC, Hosseini A, Gewirth AA (2016) Nat Mater 15:754–759CrossRefGoogle Scholar
  257. 257.
    Wang J, Wang K, Wang FB, Xia XH (2014) Nat Commun 5:5285Google Scholar
  258. 258.
    Cao R, Thapa R, H. Kim, X. Xu, M.G. Kim, Q. Li, N. Park, M.L. Liu, J. Cho (2013) Nat Commun 4Google Scholar
  259. 259.
    Grumelli D, Wurster B, Stepanow S, Kern K (2013) Nat Commun 4:2904Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Roberto A. S. Luz
    • 2
  • Andressa R. Pereira
    • 1
  • Rodrigo M. Iost
    • 1
  • Frank N. Crespilho
    • 1
    Email author
  1. 1.Instituto de Química de São Carlos, Universidade de São PauloSão CarlosBrazil
  2. 2.Departamento de Química, Universidade Estadual do PiauíTeresinaBrazil

Personalised recommendations