Advertisement

Nanoenergy pp 141-160 | Cite as

Latest Advances on the Columnar Nanostructure for Solar Water Splitting

  • Flavio L SouzaEmail author
  • Edson R LeiteEmail author
Chapter
  • 867 Downloads

Abstract

In this chapter, we briefly review a recent progress in chemical synthesis used to prepare promising and active material to be applied as photoanode in a PEC cell. A variety of morphology, crystal alignment, and bulk recombination was discussed during the light-induced water oxidation reaction evaluation. The major drawback related to the hole diffusion through the solid/liquid interface was addressed in terms of high annealing temperature combined with dopant addition. In this chapter, a critical view and depth understanding of the role of synergistic effect of these two parameters were discussed focusing on the molecular oxygen evolution mechanism from sunlight-driven water oxidation reaction.

References

  1. 1.
    Fujishima A, Honda K (1972) Nature 238:37–38CrossRefGoogle Scholar
  2. 2.
    Sivula K, Le Formal F, Grätzel M (2011) Chemsuschem 4:432–449CrossRefGoogle Scholar
  3. 3.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110:6446–6473CrossRefGoogle Scholar
  4. 4.
    Cho IS, Han HS, Logar M, Park J, Zheng X (2016) Adv Energy Mat 6Google Scholar
  5. 5.
    Pendlebury SR, Cowan AJ, Barroso M, Sivula K, Ye J, Grätzel M, Klug DR, Tang J, Durrant JR (2012) Energy Environ Sci 5:6304–6312CrossRefGoogle Scholar
  6. 6.
    Warren SC, Voïtchovsky K, Dotan H, Leroy CM, Cornuz M, Stellacci F, Hébert C, Rothschild A, Grätzel M (2013) Nat Mater 12:842–849CrossRefGoogle Scholar
  7. 7.
    Steier L, Herraiz-Cardona I, Gimenez S, Fabregat-Santiago F, Bisquert J, Tilley SD, Grätzel M (2014) Adv Func Mater 24:7681–7688CrossRefGoogle Scholar
  8. 8.
    Bertoluzzi L, Bisquert J (2012) J phys Chem Lett 3:2517–2522CrossRefGoogle Scholar
  9. 9.
    Barroso M, Mesa CA, Pendlebury SR, Cowan AJ, Hisatomi T, Sivula K, Grätzel M, Klug DR, Durrant JR (2012) Proc Natl Acad Sci 109:15640–15645CrossRefGoogle Scholar
  10. 10.
    Young KM, Klahr BM, Zandi O, Hamann TW (2013) Catal Sci Technol 3:1660–1671CrossRefGoogle Scholar
  11. 11.
    Nellist MR, Laskowski FA, Lin F, Mills TJ, Boettcher SW (2016) Acc Chem Res 49:733–740CrossRefGoogle Scholar
  12. 12.
    Tamirat AG, Rick J, Dubale AA, Su W-N, Hwang B-J (2016) Nanoscale Horizons 1:243–267CrossRefGoogle Scholar
  13. 13.
    Shinde PS, Annamalai A, Kim JH, Choi SH, Lee JS, Jang JS (2015) Sol Energy Mater Sol Cells 141:71–79CrossRefGoogle Scholar
  14. 14.
    Shinde PS, Choi SH, Kim Y, Ryu J, Jang JS (2016) Phys Chemistry Chem Phys 18:2495–2509CrossRefGoogle Scholar
  15. 15.
    Soares MR, Gonçalves RH, Nogueira IC, Bettini J, Chiquito AJ, Leite ER (2016) Phys Chemistry Chem Phys 18:21780–21788CrossRefGoogle Scholar
  16. 16.
    Gadiyar C, Loiudice A, Buonsanti R (2017) J Phys D Appl Phys 50:074006CrossRefGoogle Scholar
  17. 17.
    Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Gratzel M (2010) J Am Chem Soc 132:7436–7444CrossRefGoogle Scholar
  18. 18.
    Goncalves RH, Leite ER (2014) J Mater Res 29:47–54CrossRefGoogle Scholar
  19. 19.
    Gonçalves RH, Lima BH, Leite ER (2011) J Am Chem Soc 133:6012–6019CrossRefGoogle Scholar
  20. 20.
    Bjoerksten U, Moser J, Graetzel M (1994) Chem Mater 6:858–863CrossRefGoogle Scholar
  21. 21.
    Tilley SD, Cornuz M, Sivula K, Grätzel M (2010) Angew Chem 122:6549–6552CrossRefGoogle Scholar
  22. 22.
    Dare-Edwards MP, Goodenough JB, Hamnett A, Trevellick PR (1983) J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 79:2027–2041CrossRefGoogle Scholar
  23. 23.
    Trasatti S (1980) J Electroanal Chem Interfacial Electrochem 111:125–131CrossRefGoogle Scholar
  24. 24.
    Yanina SV, Rosso KM (2008) Science 320:218–222CrossRefGoogle Scholar
  25. 25.
    Gonçalves RH, Leite ER (2014) Energy Environ Sci 7:2250–2254CrossRefGoogle Scholar
  26. 26.
    de Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Soft Matter 7:3701–3710CrossRefGoogle Scholar
  27. 27.
    Vayssieres L, Beermann N, Lindquist S-E, Hagfeldt A (2001) Chem Mater 13:233–235CrossRefGoogle Scholar
  28. 28.
    Vayssieres L, Guo J, Nordgren J (2000) Purpose-built anisotropic metal oxide nanomaterials, MRS Proceedings. Cambridge University Press, USA, p C7. 8Google Scholar
  29. 29.
    de Carvalho VAN, Luz RAS, Lima BH, Crespilho FN, Leite ER, Souza FL (2012) Journal of Power Sources 205 (2012) 525–529 Google Scholar
  30. 30.
    Ferraz LC, Carvalho WM Jr, Criado D, Souza FL (2012) ACS Appl Mater Interfaces 4:5515–5523CrossRefGoogle Scholar
  31. 31.
    Lindgren T, Wang H, Beermann N, Vayssieres L, Hagfeldt A, Lindquist S-E (2002) Sol Energy Mater Sol Cells 71:231–243CrossRefGoogle Scholar
  32. 32.
    Beermann N, Vayssieres L, Lindquist SE, Hagfeldt A (2000) J Electrochem Soc 147:2456–2461CrossRefGoogle Scholar
  33. 33.
    Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y (2011) Nano Lett 11:2119–2125CrossRefGoogle Scholar
  34. 34.
    Deng J, Zhong J, Pu A, Zhang D, Li M, Sun X, Lee S-T (2012) J Appl Phys 112:084312CrossRefGoogle Scholar
  35. 35.
    Shen S, Jiang J, Guo P, Kronawitter CX, Mao SS, Guo L (2012) Nano Energy 1:732–741CrossRefGoogle Scholar
  36. 36.
    Ling Y, Wang G, Reddy J, Wang C, Zhang JZ, Li Y (2012) Angew Chem Int Ed 51:4074–4079CrossRefGoogle Scholar
  37. 37.
    Xi L, Tran PD, Chiam SY, Bassi PS, Mak WF, Mulmudi HK, Batabyal SK, Barber J, Loo JSC, Wong LH (2012) J Phys Chem C 116:13884–13889CrossRefGoogle Scholar
  38. 38.
    Miao C, Ji S, Xu G, Liu G, Zhang L, Ye C (2012) ACS Appl Mater Interfaces 4:4428–4433CrossRefGoogle Scholar
  39. 39.
    Xi L, Chiam SY, Mak WF, Tran PD, Barber J, Loo SCJ, Wong LH (2013) Chemi Sci 4:164–169CrossRefGoogle Scholar
  40. 40.
    Miao C, Shi T, Xu G, Ji S, Ye C (2013) ACS Appl Mater Interfaces 5:1310–1316CrossRefGoogle Scholar
  41. 41.
    Shen S, Kronawitter CX, Wheeler DA, Guo P, Lindley SA, Jiang J, Zhang JZ, Guo L, Mao SS (2013) J Mat Chem A 1:14498–14506CrossRefGoogle Scholar
  42. 42.
    Shen S, Guo P, Wheeler DA, Jiang J, Lindley SA, Kronawitter CX, Zhang JZ, Guo L, Mao SS (2013) Nanoscale 5:9867–9874CrossRefGoogle Scholar
  43. 43.
    Chiam SY, Kumar MH, Bassi PS, Seng HL, Barber J, Wong LH (2014) ACS Appl Mater Interfaces 6:5852–5859CrossRefGoogle Scholar
  44. 44.
    Shen S, Li M, Guo L, Jiang J, Mao SS (2014) J Colloid Interface Sci 427:20–24CrossRefGoogle Scholar
  45. 45.
    Shen S, Zhou J, Dong C-L, Hu Y, Tseng EN, Guo P, Guo L, Mao SS (2014) Scientific Reports 4:6627CrossRefGoogle Scholar
  46. 46.
    Freitas AL, Carvalho WM, Souza FL (2015) J Mater Res 30:3595–3604CrossRefGoogle Scholar
  47. 47.
    Li X, Bassi PS, Boix PP, Fang Y, Wong LH (2015) ACS Appl Mater Interfaces 7:16960–16966CrossRefGoogle Scholar
  48. 48.
    Wang D, Zhang Y, Peng C, Wang J, Huang Q, Su S, Wang L, Huang W, Fan C (2015) Adv Sci 2Google Scholar
  49. 49.
    Fu Y, Dong CL, Lee WY, Chen J, Guo P, Zhao L, Shen S (2016) ChemNanoMat 2:704–711CrossRefGoogle Scholar
  50. 50.
    Carvalho WM, Souza FL (2016) ChemPhysChem 17:2710–2717CrossRefGoogle Scholar
  51. 51.
    Wickman B, Fanta AB, Burrows A, Hellman A, Wagner JB, Iandolo B (2017) Scientific reports 7Google Scholar
  52. 52.
    Zhou F, Kotru S, Pandey R (2002) Thin Solid Films 408:33–36CrossRefGoogle Scholar
  53. 53.
    Kaouk A, Ruoko T-P, Pyeon M, Gönüllü Y, Kaunisto K, Lemmetyinen H, Mathur S (2016) J Phys Chem C 120:28345–28353CrossRefGoogle Scholar
  54. 54.
    Kronawitter C, Zegkinoglou I, Rogero C, Guo J-H, Mao S, Himpsel F, Vayssieres L (2012) J Phys Chem C 116:22780–22785CrossRefGoogle Scholar
  55. 55.
    Annamalai A, Kannan AG, Lee SY, Kim D-W, Choi SH, Jang JS (2015) J Phys Chem C 119:19996–20002CrossRefGoogle Scholar
  56. 56.
    Li M, Yang Y, Ling Y, Qiu W, Wang F, Liu T, Song Y, Liu X, Fang P, Tong Y (2017) Nano Lett 17:2490–2495CrossRefGoogle Scholar
  57. 57.
    Ling Y, Li Y (2014) Part Part Syst Charact 31:1113–1121CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centro de Ciências Naturais e HumanasUniversidade Federal do ABC—UFABCSanto André, São PauloBrazil
  2. 2.Departamento de QuímicaUniversidade Federal de São CarlosSão Carlos, São PauloBrazil

Personalised recommendations