Abstract
Starting and emphasizing the importance for future demand on Earth energy feed, this chapter discusses the state-of-the-art of photocatalytic water splitting (PWS) using suspended particles for hydrogen evolution. Herein, the thermodynamics requirements for photocatalyst semiconductors for water splitting for efficient hydrogen and oxygen production, to date overview on important photocatalysts and related fine-tuning processes adopted to meet the desired properties for PWS with improved photocatalytic activities, a profound discussion and review about tandem photocatalyst systems are covered. A descriptive discussion on efficiency determination including solar-to-hydrogen efficiency and apparent quantum efficiency to compare the photocatalytic performance of the photocatalysts is presented.
This is a preview of subscription content, access via your institution.
Buying options








References
Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38(5):569–582
Shi Z, Wen X, Guan Z, Cao D, Luo W, Zou Z (2015) Recent progress in photoelectrochemical water splitting for solar hydrogen production. Ann Phys 358:236–247
Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photon 6(8):511–518
Frank Osterloh BAP (2011) Recent developments in solar water-splitting photocatalysis. MRS Bull 36(1):17–22
Fan Y, Li D, Deng M, Luo Y, Meng Q (2009) An overview on water splitting photocatalysts. Front Chem China 4(4):343–351
Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38
Khan S, Zapata MJM, Baptista DL, Gonçalves RV, Fernandes JA, Dupont J, Santos MJL, Teixeira SR (2015) Effect of oxygen content on the photoelectrochemical activity of crystallographically preferred oriented porous Ta N nanotubes. J Phys Chem C 119(34):19906–19914
Khan S, Zapata MJM, Pereira MB, Gonçalves RV, Strizik L, Dupont J, Santos MJL, Teixeira SR (2015) Structural, optical and photoelectrochemical characterizations of monoclinic Ta N thin films. Phys Chem Chem Phys 17(37):23952–23962
Tee SY, Win KY, Teo WS, Koh L-D, Liu S, Teng CP, et al (2017) Recent progress in energy-driven water splitting. Adv Sci 4(5):1600337
Acar C, Dincer I, Naterer GF (2016) Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int J Energ Res 40(11):1449–1473
Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42(6):2294–2320
Barber J, Tran PD. From natural to artificial photosynthesis (2013). J Royal Soc Interface 10(81)
Teoh WY, Scott JA, Amal R (2012) Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J Phys Chem Lett 3(5):629–639
Navarro Yerga RM, Álvarez Galván MC, del Valle F, Villoria de la Mano JA, Fierro JLG (2009) Water splitting on semiconductor catalysts under visible-light irradiation. Chemsuschem 2(6):471–485
Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278
Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4(4):432–449
Grimes CA, Varghese OK, Ranjan S (2008) Light, water, hydrogen the solar generation of hydrogen by water photoelectrolysis. Springer, New York, p 517. ISBN: 978-0-387-33198-0 (Print) 978-0-387-68238-9 (Online)
Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, et al (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energ Environ Sci 6(7):1983–2002
Yuan Y-P, Ruan L-W, Barber J, Joachim Loo SC, Xue C (2014) Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energ Environ Sci 7(12):3934–3951
Osterloh FE (2014) Boosting the efficiency of suspended photocatalysts for overall water splitting. J Phys Chem Lett 5(15):2510–2511
Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, et al (2016) Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat Mater 15(6):611–615 (advance online publication)
Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, et al (2011) Solar water splitting cells (vol 110, pg 6446, 2010). Chem Rev 111(9):5815
Chen X, Li C, Gratzel M, Kostecki R, Mao SS (2012) Nanomaterials for renewable energy production and storage. Chem Soc Rev 41(23):7909–7937
Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 99(45):16646–16654
Fan W, Zhang Q, Wang Y (2013) Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys Chem Chem Phys 15(8):2632–2649
Jafari T, Moharreri E, Amin A, Miao R, Song W, Suib S (2016) Photocatalytic water splitting—the untamed dream: a review of recent advances. Molecules 21(7):900
Yang J, Yan H, Zong X, Wen F, Liu M, Li C (2013) Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production. Phil Trans Royal Soc A: Math, Phys Eng Sci 371(1996)
Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43(22):7787–7812
Wang D, Hisatomi T, Takata T, Pan C, Katayama M, Kubota J et al (2013) Core/shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. Angew Chem Int Ed 52(43):11252–11256
Maeda K, Xiong A, Yoshinaga T, Ikeda T, Sakamoto N, Hisatomi T et al (2010) Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. Angew Chem Int Ed 49(24):4096–4099
Wang D, Li R, Zhu J, Shi J, Han J, Zong X et al (2012) Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst. J Phys Chem C 116(8):5082–5089
Breault TM, Brancho JJ, Guo P, Bartlett BM (2013) Visible light water oxidation using a co-catalyst loaded anatase-structured ti1–(5x/4)Nb x O2–y–δNy Compound. Inorg Chem 52(16):9363–9368
Ma SSK, Maeda K, Abe R, Domen K (2012) Visible-light-driven nonsacrificial water oxidation over tungsten trioxide powder modified with two different cocatalysts. Energ Environ Sci 5(8):8390–8397
Meekins BH, Kamat PV (2011) Role of water oxidation catalyst IrO2 in shuttling photogenerated holes across TiO2 interface. J Phys Chem Lett 2(18):2304–2310
Asai R, Nemoto H, Jia Q, Saito K, Iwase A, Kudo A (2014) A visible light responsive rhodium and antimony-codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting. Chem Commun 50(19):2543–2546
Ma B, Yang J, Han H, Wang J, Zhang X, Li C (2010) Enhancement of photocatalytic water oxidation activity on IrOx–ZnO/Zn2–xGeO4–x–3yN2y catalyst with the solid solution phase junction. J Phys Chem C 114(29):12818–12822
Ai G, Mo R, Li H, Zhong J (2015) Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting. Nanoscale 7(15):6722–6728
Kraeutler B, Bard AJ (1978) Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates. J Am Chem Soc 100(13):4317–4318
López R, Gómez R (2011) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61(1):1–7
Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43(22):7520–7535
Takata T, Tanaka A, Hara M, Kondo JN, Domen K (1998) Recent progress of photocatalysts for overall water splitting. Catal Today 44(1–4):17–26
Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. materials-related aspects. Int J Hydrogen Energy 27(10):991–1022
Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959
Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11(3):401–425
Hernandez-Alonso MD, Fresno F, Suarez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2(12):1231–1257
Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570
Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1(18):2655–2661
Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA et al (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473
Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349
Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42(6):2294–2320
Sivula K, van de Krol R. Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mat 16010
Gonçalves RV, Migowski P, Wender H, Eberhardt D, Weibel DE, Sonaglio FC et al (2012) Ta2O5 nanotubes obtained by anodization: effect of thermal treatment on the photocatalytic activity for hydrogen production. J Phys Chem C 116(26):14022–14030
Li Z, Liu J, Li J, Shen J (2012) Template free synthesis of crystallized nanoporous F-Ta2O5 spheres for effective photocatalytic hydrogen production. Nanoscale 4(13):3867–3870
Noda Y, Lee B, Domen K, Kondo JN (2008) Synthesis of crystallized mesoporous tantalum oxide and its photocatalytic activity for overall water splitting under ultraviolet light irradiation. Chem Mater 20(16):5361–5367
Lin S, Shi L, Yoshida H, Li M, Zou X (2013) Synthesis of hollow spherical tantalum oxide nanoparticles and their photocatalytic activity for hydrogen production. J Solid State Chem 199:15–20
Cherevan AS, Gebhardt P, Shearer CJ, Matsukawa M, Domen K, Eder D (2014) Interface engineering in nanocarbon-Ta2O5 hybrid photocatalysts. Energy Environ Sci 7(2):791–796
Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72(1):83–86
Munuera G, Gonzalez-Elipe AR, Fernandez A, Malet P, Espinos JP (1989) Spectroscopic characterisation and photochemical behaviour of a titanium hydroxyperoxo compound. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 85(6):1279–1290
Duonghong D, Borgarello E, Graetzel M (1981) Dynamics of light-induced water cleavage in colloidal systems. J Am Chem Soc 103(16):4685–4690
Galińska A, Walendziewski J (2005) Photocatalytic water splitting over Pt–TiO2 in the presence of sacrificial reagents. Energy Fuels 19(3):1143–1147
Wender H, Feil AF, Diaz LB, Ribeiro CS, Machado GJ, Migowski P et al (2011) Self-organized TiO2 nanotube arrays: synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. ACS Appl Mater Interfaces 3(4):1359–1365
Kamat PV (2010) Graphene-based nanoarchitectures. anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1(2):520–527
Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1):380–386
Xiang Q, Yu J, Jaroniec M (2011) Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 3(9):3670–3678
Zhang XY, Li HP, Cui XL (2009) Preparation and photocatalytic activity for hydrogen evolution of TiO2/graphene sheets composite. Chin J Inorg Chem 25(11):1903–1907
Zhang X-Y, Li H-P, Cui X-L, Lin Y (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20(14):2801
Yeh T-F, Syu J-M, Cheng C, Chang T-H, Teng H (2010) Graphite oxide as a photocatalyst for hydrogen production from water. Adv Func Mater 20(14):2255–2262
Babu SG, Vinoth R, Praveen Kumar D, Shankar MV, Chou H-L, Vinodgopal K et al (2015) Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p–n heterojunction for increased hydrogen production. Nanoscale 7(17):7849–7857
Kudo A, Niishiro R, Iwase A, Kato H (2007) Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts. Chem Phys 339(1–3):104–110
Hu C-C, Teng H (2010) Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting. J Catal 272(1):1–8
Zhu Y, Salvador PA, Rohrer GS (2016) Controlling the relative areas of photocathodic and photoanodic terraces on the SrTiO3(111) Surface. Chem Mater 28(14):5155–5162
Wagner FT, Somorjai GA (1980) Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals. J Am Chem Soc 102(17):5494–5502
van Benthem K, Elsässer C, French RH (2001) Bulk electronic structure of SrTiO3: experiment and theory. J Appl Phys 90(12):6156–6164
Townsend TK, Browning ND, Osterloh FE (2012) Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano 6(8):7420–7426
Townsend TK, Browning ND, Osterloh FE (2012) Overall photocatalytic water splitting with NiOx–SrTiO3—a revised mechanism. Energy Environ Sci 5(11):9543
Mu L, Zhao Y, Li A, Wang S, Wang Z, Yang J et al (2016) Enhancing charge separation on high symmetry SrTiO3exposed with anisotropic facets for photocatalytic water splitting. Energy Environ Sci 9(7):2463–2469
Wender H, Gonçalves RV, Dias CSB, Zapata MJM, Zagonel LF, Mendonça EC et al (2013) Photocatalytic hydrogen production of Co(OH)2 nanoparticle-coated α-Fe2O3 nanorings. Nanoscale 5(19):9310
Darwent JR, Mills A. Photo-oxidation of water sensitized by WO3 powder (1982) J Chem Soc, Faraday Trans 2 78(2):359
Erbs W, Desilvestro J, Borgarello E, Graetzel M (1984) Visible-light-induced oxygen generation from aqueous dispersions of tungsten(VI) oxide. J Phys Chem 88(18):4001–4006
Shimodaira Y, Kato H, Kobayashi H, Kudo A (2006) Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J Phys Chem B 110(36):17790–17797
Kudo A, Hijii S (1999) H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem Lett 28(10):1103–1104
Wang D, Tang J, Zou Z, Ye J (2005) Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M3V2O8 (M=Mg, Ni, Zn). Chem Mater 17(20):5177–5182
Radha R, Srinivasan A, Manimuthu P, Balakumar S (2015) Tailored sunlight driven nano-photocatalyst: bismuth iron tungstate (BiFeWO6). J Mater Chem C 3(39):10285–10292
Luan J, Guo N, Chen B (2014) Hydrogen production with Ga2BiSbO7, Fe2BiSbO7 and Gd2BiSbO7 as photocatalysts under visible light irradiation. Int J Hydrogen Energy 39(3):1228–1236
Cao J, Kako T, Li P, Ouyang S, Ye J (2011) Fabrication of p-type CaFe2O4 nanofilms for photoelectrochemical hydrogen generation. Electrochem Commun 13(3):275–278
Dom R, Subasri R, Hebalkar NY, Chary AS, Borse PH (2012) Synthesis of a hydrogen producing nanocrystalline ZnFe2O4 visible light photocatalyst using a rapid microwave irradiation method. RSC Adv 2(33):12782
Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278
Klahr BM, Hamann TW (2011) Current and voltage limiting processes in thin film hematite electrodes. J Phys Chem C 115(16):8393–8399
Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW (2012) Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energ Environ Sci. 5(6):7626–7636
Klahr BM, Martinson ABF, Hamann TW (2011) Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Langmuir 27(1):461–468
Kay A, Cesar I, Grätzel M (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc 128(49):15714–15721
Mangrulkar PA, Polshettiwar V, Labhsetwar NK, Varma RS, Rayalu SS (2012) Nano-ferrites for water splitting: unprecedented high photocatalytic hydrogen production under visible light. Nanoscale. 4(16):5202
Murugesan S, Huda MN, Yan Y, Al-Jassim MM, Subramanian V (2010) Band-engineered bismuth titanate pyrochlores for visible light photocatalysis. J Phys Chem C 114(23):10598–10605
Zhou D, Yang H, Tu Y, Tian Y, Cai Y, Hu Z, et al (2016) In situ fabrication of Bi2Ti2O7/TiO2 heterostructure submicron fibers for enhanced photocatalytic activity. Nanoscale Res Lett 11(1)
McInnes A, Sagu JS, Wijayantha KGU (2014) Fabrication and photoelectrochemical studies of Bi2Ti2O7 pyrochlore thin films by aerosol assisted chemical vapour deposition. Mater Lett 137:214–217
Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121(49):11459–11467
Seabold JA, Choi K-S (2012) Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J Am Chem Soc 134(4):2186–2192
Sun S, Wang W, Li D, Zhang L, Jiang D (2014) Solar light driven pure water splitting on quantum sized BiVO4 without any cocatalyst. ACS Catal 4(10):3498–3503
Maeda K, Teramura K, Saito N, Inoue Y, Kobayashi H, Domen K (2006) Overall water splitting using (oxy)nitride photocatalysts. Pure Appl Chem 78(12)
Moriya Y, Takata T, Domen K (2013) Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord Chem Rev 257(13–14):1957–1969
Takata T, Pan C, Domen K (2016) Recent progress in oxynitride photocatalysts for visible-light-driven water splitting. Sci Technol Adv Mater 16(3):033506
Bamwenda GR, Sayama K, Arakawa H (1999) The effect of selected reaction parameters on the photoproduction of oxygen and hydrogen from a WO3–Fe2+–Fe3+ aqueous suspension. J Photochem Photobiol, A 122(3):175–183
Tanaka A, Hashimoto K, Kominami H (2014) Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. J Am Chem Soc 136(2):586–589
Zhang LJ, Li S, Liu BK, Wang DJ, Xie TF (2014) Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal 4(10):3724–3729
Juan M, Coronado FF, Hernández-Alonso MD, Portela R (2013) Design of advanced photocatalytic materials for energy and environmental applications. Springer, Berlin
Samadi M, Zirak M, Naseri A, Khorashadizade E, Moshfegh AZ (2016) Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605:2–19
Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98(51):13669–13679
H-y Lin, C-y Shih (2016) Efficient one-pot microwave-assisted hydrothermal synthesis of M (M=Cr, Ni, Cu, Nb) and nitrogen co-doped TiO2 for hydrogen production by photocatalytic water splitting. J Mol Catal A: Chem 411:128–137
Dholam R, Patel N, Adami M, Miotello A (2009) Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrogen Energy 34(13):5337–5346
Selcuk MZ, Boroglu MS, Boz I (2012) Hydrogen production by photocatalytic water-splitting using nitrogen and metal co-doped TiO2 powder photocatalyst. React Kinet, Mech Catal 106(2):313–324
Sun T, Fan J, Liu E, Liu L, Wang Y, Dai H et al (2012) Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: application in hydrogen evolution by water splitting under visible light irradiation. Powder Technol 228:210–218
Banerjee B, Amoli V, Maurya A, Sinha AK, Bhaumik A (2015) Green synthesis of Pt-doped TiO2 nanocrystals with exposed (001) facets and mesoscopic void space for photo-splitting of water under solar irradiation. Nanoscale. 7(23):10504–10512
Jiang Z, Liu D, Jiang D, Wei W, Qian K, Chen M et al (2014) Bamboo leaf-assisted formation of carbon/nitrogen co-doped anatase TiO2 modified with silver and graphitic carbon nitride: novel and green synthesis and cooperative photocatalytic activity. Dalton Trans 43(36):13792
Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110(48):24287–24293
Su J, Zou X, Chen J-S (2014) Self-modification of titanium dioxide materials by Ti3+ and/or oxygen vacancies: new insights into defect chemistry of metal oxides. RSC Adv 4(27):13979
Fu G, Zhou P, Zhao M, Zhu W, Yan S, Yu T et al (2015) Carbon coating stabilized Ti3+-doped TiO2 for photocatalytic hydrogen generation under visible light irradiation. Dalton Trans 44(28):12812–12817
Qiu B, Zhou Y, Ma Y, Yang X, Sheng W, Xing M et al (2015) Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis. Sci Rep 5:8591
Serra M, Baldovi HG, Albarracin F, Garcia H (2016) Visible light photocatalytic activity for hydrogen production from water–methanol mixtures of open-framework V-doped mixed-valence titanium phosphate. Appl Catal B 183:159–167
Strataki N, Antoniadou M, Dracopoulos V, Lianos P (2010) Visible-light photocatalytic hydrogen production from ethanol–water mixtures using a Pt–CdS–TiO2 photocatalyst. Catal Today 151(1–2):53–57
Jang J, Kim H, Joshi U, Jang J, Lee J (2008) Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. Int J Hydrogen Energy 33(21):5975–5980
Yun HJ, Lee H, Kim ND, Lee DM, Yu S, Yi J (2011) A combination of two visible-light responsive photocatalysts for achieving the z-scheme in the solid state. ACS Nano 5(5):4084–4090
Yan J, Wu H, Chen H, Zhang Y, Zhang F, Liu SF (2016) Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl Catal B 191:130–137
Jian Z, Huang S, Cao Y, Zhang Y (2016) Hydrothermal preparation and characterization of TiO2/BiVO4 composite catalyst and its photolysis of water to produce hydrogen. Photochem Photobiol 92(3):363–370
Li J, Yuan H, Zhu Z (2015) Fabrication of Cu2O/Au/BiPO4 Z-scheme photocatalyst to improve the photocatalytic activity under solar light. J Mol Catal A: Chem 410:133–139
Jia X, Tahir M, Pan L, Huang Z-F, Zhang X, Wang L et al (2016) Direct Z-scheme composite of CdS and oxygen-defected CdWO4: an efficient visible-light-driven photocatalyst for hydrogen evolution. Appl Catal B 198:154–161
Li H, Yu H, Quan X, Chen S, Zhang Y (2016) Uncovering the key role of the fermi level of the electron mediator in a Z-Scheme photocatalyst by detecting the charge transfer process of WO3-metal-gC3N4 (Metal=Cu, Ag, Au). ACS Appl Mater Interfaces 8(3):2111–2119
Zhang X, Zhang L, Xie T, Wang D (2009) Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J Phys Chem C 113(17):7371–7378
Zhu W, Han D, Niu L, Wu T, Guan H (2016) Z-scheme Si/MgTiO3 porous heterostructures: noble metal and sacrificial agent free photocatalytic hydrogen evolution. Int J Hydrogen Energy 41(33):14713–14720
Pan Z, Hisatomi T, Wang Q, Chen S, Nakabayashi M, Shibata N et al (2016) Photocatalyst sheets composed of particulate LaMg1/3Ta2/3O2N and Mo-Doped BiVO4 for Z-scheme water splitting under visible light. ACS Catalysis 6(10):7188–7196
Maeda K, Lu D, Domen K (2013) Solar-driven z-scheme water splitting using modified BaZrO3–BaTaO2N solid solutions as photocatalysts. ACS Catalysis. 3(5):1026–1033
Xu L, Shi W, Guan J (2012) Preparation of crystallized mesoporous CdS/Ta2O5 composite assisted by silica reinforcement for visible light photocatalytic hydrogen evolution. Catal Commun 25:54–58
Xu L, Guan J, Gao L, Sun Z (2011) Preparation of heterostructured mesoporous In2O3/Ta2O5 nanocomposites with enhanced photocatalytic activity for hydrogen evolution. Catal Commun 12(6):548–552
Xu L, Guan J, Shi W (2012) Enhanced interfacial charge transfer and visible photocatalytic activity for hydrogen evolution from a Ta2O5-based mesoporous composite by the incorporation of quantum-sized CdS. ChemCatChem 4(9):1353–1359
Agegnehu AK, Pan C-J, Tsai M-C, Rick J, Su W-N, Lee J-F et al (2016) Visible light responsive noble metal-free nanocomposite of V-doped TiO2 nanorod with highly reduced graphene oxide for enhanced solar H2 production. Int J Hydrogen Energy 41(16):6752–6762
Mukherji A, Seger B, Lu GQ, Wang L (2011) Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production. ACS Nano 5(5):3483–3492
Adhikari SP, Hood ZD, More KL, Ivanov I, Zhang L, Gross M et al (2015) Visible light assisted photocatalytic hydrogen generation by Ta2O5/Bi2O3, TaON/Bi2O3, and Ta3N5/Bi2O3composites. RSC Adv 5(68):54998–55005
Naik B, Martha S, Parida KM (2011) Facile fabrication of Bi2O3/TiO2−x N x nanocomposites for excellent visible light driven photocatalytic hydrogen evolution. Int J Hydrogen Energy 36(4):2794–2802
Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37
Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42(6):2294–2320
Maeda K (2013) Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal 3:1486–1503
Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278
Radhakrishnan AN, Rao PP, Linsa KS, Deepa M, Koshy P (2011) Influence of disorder-to-order transition on lattice thermal expansion and oxide ion conductivity in (Ca(x)Gd(1−x))(2)(Zr(1−x)M(x))2O7 pyrochlore solid solutions. Dalton Trans 40(15):3839–3848
Sasaki Y, Kato H, Kudo A (2013) [Co(bpy)3](3+/2+) and [Co(phen)3](3+/2+) electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J Am Chem Soc 135:5441–5449
Sasaki Y, Nemoto H, Saito K, Kudo A (2009) Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J Phys Chem C 113
Fujihara K (1998) TO, M. Matsumura. Splitting of water by electrochemical combination of two photocatalytic reactions on particles. J Chem Soc, Faraday Trans 94:3705–3709
Kato H, Hori M, Konta R, Shimodaira Y, Kudo A (2004) Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradia. Chem Lett 33:1348–1349
Abe R, Sayama K, Domen K, Arakawa H (2001) A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and IO3−/I− shuttle redox mediator. Chem Phys Lett 344:339–344
Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C (2016) Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1. Nat Mater 15(6):611–615
Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R (2011) Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc 133:11054–11057
Sayama K, Yoshida R, Kusama H, Okabe K, Abe Y, Arakawa H (1997) Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+:Fe2+ redox system. Chem Phys Lett 277:387–391
Tennakone K, Tantrigoda R, Abeysinghe S, Punchihewa S, Fernando CA (1990) Water photolysis via reversible oxidation and reduction between MnO2 and MnO4 2−. J Photochem Photobiol, A-Chem 52:43–46
Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2001) Arakawa. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I− shuttle redox mediator under visible light irradiation. Chem Commun 2416–2417
Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132:5858–5868
Yan J, Wu H, Chen H, Zhang Y, Zhang F, Liu SF (2016) Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl Catal B-Environ 191:130–137
Jia Q, Iwase A, Kudo A (2014) BiVO4–Ru/SrTiO3:Rh composite Z-scheme photocatalyst for solar water splitting. Chem Sci 5:1513–1519
Wang Q, Hisatomi T, Suzuki Y, Pan Z, Seo J, Katayama M et al (2017) Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J Am Chem Soc 139(4):1675–1683
Pan Z, Hisatomi T, Wang Q, Chen S, Iwase A, Nakabayashi M, Shibata N, Takata T, Katayama M, Minegishi T, Kudo A, Domen K (2016) Photoreduced graphene oxide as a conductive binder to improve the water splitting activity of photocatalyst sheets. Adv Funct Mater 26:7011–7019
Pan Z, Hisatomi T, Wang Q, Chen S, Iwase A, Nakabayashi M, Shibata N, Takata T, Katayama M, Minegishi T, Kudo A, Domen K (2016) Photocatalyst sheets composed of particulate LaMg1:3Ta2:3O2N and Mo-doped BiVO4 for Z-scheme water splitting under visible light. ACS Catal 6:7188–7196
Doscher H, Young JL, Geisz JF, Turner JA, Deutsch TG (2016) Solar-to-hydrogen efficiency: shining light on photoelectrochemical device performance. Energy Environ Sci 9(1):74–80
Murphy AB, Barnes PRF, Randeniya LK, Plumb IC, Grey IE, Horne MD et al (2006) Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrogen Energy 31(14):1999–2017
Harald M, Andreas I, Robert K, Willem Z, Heinz AO, Ewan DD (2005) Spectral mismatch in calibration of photovoltaic reference devices by global sunlight method. Meas Sci Technol 16(6):1250
Kato H, Sasaki Y, Shirakura N, Kudo A (2013) Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. J Mater Chem A. 1(39):12327–12333
Sasaki Y, Kato H, Kudo A (2013) [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J Am Chem Soc 135(14):5441–5449
Wang Q, Hisatomi T, Ma SSK, Li Y, Domen K (2014) Core/shell structured La- and Rh-codoped SrTiO3 as a hydrogen evolution photocatalyst in Z-scheme overall water splitting under visible light irradiation. Chem Mater 26(14):4144–4150
Wang Q, Hisatomi T, Suzuki Y, Pan Z, Seo J, Katayama M et al (2017) Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J Am Chem Soc 139(4):1675–1683
Youn DH, Jang J-W, Kim JY, Jang JS, Choi SH, Lee JS (2014) Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing. Sci Rep 4:5492
Li Y, Zhang L, Torres-Pardo A, González-Calbet JM, Ma Y, Oleynikov P et al (2013) Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat Commun 4:2566
Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mat Chem A 3(6):2485–2534
Doscher H, Geisz JF, Deutsch TG, Turner JA (2014) Sunlight absorption in water—efficiency and design implications for photoelectrochemical devices. Energy Environ Sci 7(9):2951–2956
Liao L, Zhang Q, Su Z, Zhao Z, Wang Y, Li Y et al (2014) Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat Nano. 9(1):69–73
Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H et al (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225):970–974
Escobedo Salas S, Serrano Rosales B, de Lasa H (2013) Quantum yield with platinum modified TiO2 photocatalyst for hydrogen production. Appl Catal B: Environ 140–141:523–536
Souza VS, Scholten JD, Weibel DE, Eberhardt D, Baptista DL, Teixeira SR et al (2016) Hybrid tantalum oxide nanoparticles from the hydrolysis of imidazolium tantalate ionic liquids: efficient catalysts for hydrogen generation from ethanol/water solutions. J Mater Chem A. 4(19):7469–7475
Chen S, Shen S, Liu G, Qi Y, Zhang F, Li C (2015) Interface engineering of a CoO x /Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew Chem Int Ed 54(10):3047–3051
Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132(16):5858–5868
Martin DJ, Qiu K, Shevlin SA, Handoko AD, Chen X, Guo Z et al (2014) Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew Chem Int Ed 53(35):9240–9245
Li J, Wu N (2015) Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Technol 5(3):1360–1384
May MM, Lewerenz H-J, Lackner D, Dimroth F, Hannappel T (2015) Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat Commun 6:8286
Khan S, Santos MJL, Malfatti CF, Dupont J, Teixeira SR (2016) Pristine Ta3N5 nanotubes: trap-driven high external biasing perspective in semiconductor/electrolyte interfaces. Chem Eur J 22(51):18501–18511
Chen XB, Shen SH, Guo LJ, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Gonçalves, R.V., Wender, H., Khan, S., Melo, M.A. (2018). Photocatalytic Water Splitting by Suspended Semiconductor Particles. In: Souza, F., Leite, E. (eds) Nanoenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-62800-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-62800-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62799-1
Online ISBN: 978-3-319-62800-4
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)