Skip to main content

Photocatalytic Water Splitting by Suspended Semiconductor Particles

  • Chapter
  • First Online:
Nanoenergy

Abstract

Starting and emphasizing the importance for future demand on Earth energy feed, this chapter discusses the state-of-the-art of photocatalytic water splitting (PWS) using suspended particles for hydrogen evolution. Herein, the thermodynamics requirements for photocatalyst semiconductors for water splitting for efficient hydrogen and oxygen production, to date overview on important photocatalysts and related fine-tuning processes adopted to meet the desired properties for PWS with improved photocatalytic activities, a profound discussion and review about tandem photocatalyst systems are covered. A descriptive discussion on efficiency determination including solar-to-hydrogen efficiency and apparent quantum efficiency to compare the photocatalytic performance of the photocatalysts is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38(5):569–582

    Article  Google Scholar 

  2. Shi Z, Wen X, Guan Z, Cao D, Luo W, Zou Z (2015) Recent progress in photoelectrochemical water splitting for solar hydrogen production. Ann Phys 358:236–247

    Article  Google Scholar 

  3. Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photon 6(8):511–518

    Article  Google Scholar 

  4. Frank Osterloh BAP (2011) Recent developments in solar water-splitting photocatalysis. MRS Bull 36(1):17–22

    Google Scholar 

  5. Fan Y, Li D, Deng M, Luo Y, Meng Q (2009) An overview on water splitting photocatalysts. Front Chem China 4(4):343–351

    Article  Google Scholar 

  6. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  Google Scholar 

  7. Khan S, Zapata MJM, Baptista DL, Gonçalves RV, Fernandes JA, Dupont J, Santos MJL, Teixeira SR (2015) Effect of oxygen content on the photoelectrochemical activity of crystallographically preferred oriented porous Ta N nanotubes. J Phys Chem C 119(34):19906–19914

    Google Scholar 

  8. Khan S, Zapata MJM, Pereira MB, Gonçalves RV, Strizik L, Dupont J, Santos MJL, Teixeira SR (2015) Structural, optical and photoelectrochemical characterizations of monoclinic Ta N thin films. Phys Chem Chem Phys 17(37):23952–23962

    Google Scholar 

  9. Tee SY, Win KY, Teo WS, Koh L-D, Liu S, Teng CP, et al (2017) Recent progress in energy-driven water splitting. Adv Sci 4(5):1600337

    Google Scholar 

  10. Acar C, Dincer I, Naterer GF (2016) Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int J Energ Res 40(11):1449–1473

    Google Scholar 

  11. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42(6):2294–2320

    Google Scholar 

  12. Barber J, Tran PD. From natural to artificial photosynthesis (2013). J Royal Soc Interface 10(81)

    Google Scholar 

  13. Teoh WY, Scott JA, Amal R (2012) Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J Phys Chem Lett 3(5):629–639

    Article  Google Scholar 

  14. Navarro Yerga RM, Álvarez Galván MC, del Valle F, Villoria de la Mano JA, Fierro JLG (2009) Water splitting on semiconductor catalysts under visible-light irradiation. Chemsuschem 2(6):471–485

    Google Scholar 

  15. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278

    Article  Google Scholar 

  16. Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4(4):432–449

    Google Scholar 

  17. Grimes CA, Varghese OK, Ranjan S (2008) Light, water, hydrogen the solar generation of hydrogen by water photoelectrolysis. Springer, New York, p 517. ISBN: 978-0-387-33198-0 (Print) 978-0-387-68238-9 (Online)

    Google Scholar 

  18. Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, et al (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energ Environ Sci 6(7):1983–2002

    Google Scholar 

  19. Yuan Y-P, Ruan L-W, Barber J, Joachim Loo SC, Xue C (2014) Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energ Environ Sci 7(12):3934–3951

    Article  Google Scholar 

  20. Osterloh FE (2014) Boosting the efficiency of suspended photocatalysts for overall water splitting. J Phys Chem Lett 5(15):2510–2511

    Article  Google Scholar 

  21. Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, et al (2016) Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat Mater 15(6):611–615 (advance online publication)

    Google Scholar 

  22. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, et al (2011) Solar water splitting cells (vol 110, pg 6446, 2010). Chem Rev 111(9):5815

    Google Scholar 

  23. Chen X, Li C, Gratzel M, Kostecki R, Mao SS (2012) Nanomaterials for renewable energy production and storage. Chem Soc Rev 41(23):7909–7937

    Article  Google Scholar 

  24. Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 99(45):16646–16654

    Article  Google Scholar 

  25. Fan W, Zhang Q, Wang Y (2013) Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys Chem Chem Phys 15(8):2632–2649

    Article  Google Scholar 

  26. Jafari T, Moharreri E, Amin A, Miao R, Song W, Suib S (2016) Photocatalytic water splitting—the untamed dream: a review of recent advances. Molecules 21(7):900

    Article  Google Scholar 

  27. Yang J, Yan H, Zong X, Wen F, Liu M, Li C (2013) Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production. Phil Trans Royal Soc A: Math, Phys Eng Sci 371(1996)

    Google Scholar 

  28. Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43(22):7787–7812

    Google Scholar 

  29. Wang D, Hisatomi T, Takata T, Pan C, Katayama M, Kubota J et al (2013) Core/shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. Angew Chem Int Ed 52(43):11252–11256

    Article  Google Scholar 

  30. Maeda K, Xiong A, Yoshinaga T, Ikeda T, Sakamoto N, Hisatomi T et al (2010) Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. Angew Chem Int Ed 49(24):4096–4099

    Article  Google Scholar 

  31. Wang D, Li R, Zhu J, Shi J, Han J, Zong X et al (2012) Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst. J Phys Chem C 116(8):5082–5089

    Article  Google Scholar 

  32. Breault TM, Brancho JJ, Guo P, Bartlett BM (2013) Visible light water oxidation using a co-catalyst loaded anatase-structured ti1–(5x/4)Nb x O2–y–δNy Compound. Inorg Chem 52(16):9363–9368

    Article  Google Scholar 

  33. Ma SSK, Maeda K, Abe R, Domen K (2012) Visible-light-driven nonsacrificial water oxidation over tungsten trioxide powder modified with two different cocatalysts. Energ Environ Sci 5(8):8390–8397

    Article  Google Scholar 

  34. Meekins BH, Kamat PV (2011) Role of water oxidation catalyst IrO2 in shuttling photogenerated holes across TiO2 interface. J Phys Chem Lett 2(18):2304–2310

    Article  Google Scholar 

  35. Asai R, Nemoto H, Jia Q, Saito K, Iwase A, Kudo A (2014) A visible light responsive rhodium and antimony-codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting. Chem Commun 50(19):2543–2546

    Article  Google Scholar 

  36. Ma B, Yang J, Han H, Wang J, Zhang X, Li C (2010) Enhancement of photocatalytic water oxidation activity on IrOx–ZnO/Zn2–xGeO4–x–3yN2y catalyst with the solid solution phase junction. J Phys Chem C 114(29):12818–12822

    Article  Google Scholar 

  37. Ai G, Mo R, Li H, Zhong J (2015) Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting. Nanoscale 7(15):6722–6728

    Article  Google Scholar 

  38. Kraeutler B, Bard AJ (1978) Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates. J Am Chem Soc 100(13):4317–4318

    Article  Google Scholar 

  39. López R, Gómez R (2011) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61(1):1–7

    Article  Google Scholar 

  40. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43(22):7520–7535

    Article  Google Scholar 

  41. Takata T, Tanaka A, Hara M, Kondo JN, Domen K (1998) Recent progress of photocatalysts for overall water splitting. Catal Today 44(1–4):17–26

    Article  Google Scholar 

  42. Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. materials-related aspects. Int J Hydrogen Energy 27(10):991–1022

    Article  Google Scholar 

  43. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959

    Article  Google Scholar 

  44. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11(3):401–425

    Article  Google Scholar 

  45. Hernandez-Alonso MD, Fresno F, Suarez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2(12):1231–1257

    Article  Google Scholar 

  46. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570

    Article  Google Scholar 

  47. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1(18):2655–2661

    Article  Google Scholar 

  48. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA et al (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473

    Article  Google Scholar 

  49. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    Article  Google Scholar 

  50. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42(6):2294–2320

    Article  Google Scholar 

  51. Sivula K, van de Krol R. Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mat 16010

    Google Scholar 

  52. Gonçalves RV, Migowski P, Wender H, Eberhardt D, Weibel DE, Sonaglio FC et al (2012) Ta2O5 nanotubes obtained by anodization: effect of thermal treatment on the photocatalytic activity for hydrogen production. J Phys Chem C 116(26):14022–14030

    Article  Google Scholar 

  53. Li Z, Liu J, Li J, Shen J (2012) Template free synthesis of crystallized nanoporous F-Ta2O5 spheres for effective photocatalytic hydrogen production. Nanoscale 4(13):3867–3870

    Article  Google Scholar 

  54. Noda Y, Lee B, Domen K, Kondo JN (2008) Synthesis of crystallized mesoporous tantalum oxide and its photocatalytic activity for overall water splitting under ultraviolet light irradiation. Chem Mater 20(16):5361–5367

    Article  Google Scholar 

  55. Lin S, Shi L, Yoshida H, Li M, Zou X (2013) Synthesis of hollow spherical tantalum oxide nanoparticles and their photocatalytic activity for hydrogen production. J Solid State Chem 199:15–20

    Article  Google Scholar 

  56. Cherevan AS, Gebhardt P, Shearer CJ, Matsukawa M, Domen K, Eder D (2014) Interface engineering in nanocarbon-Ta2O5 hybrid photocatalysts. Energy Environ Sci 7(2):791–796

    Article  Google Scholar 

  57. Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72(1):83–86

    Article  Google Scholar 

  58. Munuera G, Gonzalez-Elipe AR, Fernandez A, Malet P, Espinos JP (1989) Spectroscopic characterisation and photochemical behaviour of a titanium hydroxyperoxo compound. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 85(6):1279–1290

    Article  Google Scholar 

  59. Duonghong D, Borgarello E, Graetzel M (1981) Dynamics of light-induced water cleavage in colloidal systems. J Am Chem Soc 103(16):4685–4690

    Article  Google Scholar 

  60. Galińska A, Walendziewski J (2005) Photocatalytic water splitting over Pt–TiO2 in the presence of sacrificial reagents. Energy Fuels 19(3):1143–1147

    Article  Google Scholar 

  61. Wender H, Feil AF, Diaz LB, Ribeiro CS, Machado GJ, Migowski P et al (2011) Self-organized TiO2 nanotube arrays: synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. ACS Appl Mater Interfaces 3(4):1359–1365

    Article  Google Scholar 

  62. Kamat PV (2010) Graphene-based nanoarchitectures. anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1(2):520–527

    Article  Google Scholar 

  63. Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1):380–386

    Article  Google Scholar 

  64. Xiang Q, Yu J, Jaroniec M (2011) Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 3(9):3670–3678

    Article  Google Scholar 

  65. Zhang XY, Li HP, Cui XL (2009) Preparation and photocatalytic activity for hydrogen evolution of TiO2/graphene sheets composite. Chin J Inorg Chem 25(11):1903–1907

    Google Scholar 

  66. Zhang X-Y, Li H-P, Cui X-L, Lin Y (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20(14):2801

    Article  Google Scholar 

  67. Yeh T-F, Syu J-M, Cheng C, Chang T-H, Teng H (2010) Graphite oxide as a photocatalyst for hydrogen production from water. Adv Func Mater 20(14):2255–2262

    Article  Google Scholar 

  68. Babu SG, Vinoth R, Praveen Kumar D, Shankar MV, Chou H-L, Vinodgopal K et al (2015) Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p–n heterojunction for increased hydrogen production. Nanoscale 7(17):7849–7857

    Article  Google Scholar 

  69. Kudo A, Niishiro R, Iwase A, Kato H (2007) Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts. Chem Phys 339(1–3):104–110

    Article  Google Scholar 

  70. Hu C-C, Teng H (2010) Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting. J Catal 272(1):1–8

    Article  Google Scholar 

  71. Zhu Y, Salvador PA, Rohrer GS (2016) Controlling the relative areas of photocathodic and photoanodic terraces on the SrTiO3(111) Surface. Chem Mater 28(14):5155–5162

    Article  Google Scholar 

  72. Wagner FT, Somorjai GA (1980) Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals. J Am Chem Soc 102(17):5494–5502

    Article  Google Scholar 

  73. van Benthem K, Elsässer C, French RH (2001) Bulk electronic structure of SrTiO3: experiment and theory. J Appl Phys 90(12):6156–6164

    Article  Google Scholar 

  74. Townsend TK, Browning ND, Osterloh FE (2012) Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano 6(8):7420–7426

    Article  Google Scholar 

  75. Townsend TK, Browning ND, Osterloh FE (2012) Overall photocatalytic water splitting with NiOx–SrTiO3—a revised mechanism. Energy Environ Sci 5(11):9543

    Article  Google Scholar 

  76. Mu L, Zhao Y, Li A, Wang S, Wang Z, Yang J et al (2016) Enhancing charge separation on high symmetry SrTiO3exposed with anisotropic facets for photocatalytic water splitting. Energy Environ Sci 9(7):2463–2469

    Article  Google Scholar 

  77. Wender H, Gonçalves RV, Dias CSB, Zapata MJM, Zagonel LF, Mendonça EC et al (2013) Photocatalytic hydrogen production of Co(OH)2 nanoparticle-coated α-Fe2O3 nanorings. Nanoscale 5(19):9310

    Article  Google Scholar 

  78. Darwent JR, Mills A. Photo-oxidation of water sensitized by WO3 powder (1982) J Chem Soc, Faraday Trans 2 78(2):359

    Google Scholar 

  79. Erbs W, Desilvestro J, Borgarello E, Graetzel M (1984) Visible-light-induced oxygen generation from aqueous dispersions of tungsten(VI) oxide. J Phys Chem 88(18):4001–4006

    Article  Google Scholar 

  80. Shimodaira Y, Kato H, Kobayashi H, Kudo A (2006) Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J Phys Chem B 110(36):17790–17797

    Article  Google Scholar 

  81. Kudo A, Hijii S (1999) H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem Lett 28(10):1103–1104

    Article  Google Scholar 

  82. Wang D, Tang J, Zou Z, Ye J (2005) Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M3V2O8 (M=Mg, Ni, Zn). Chem Mater 17(20):5177–5182

    Article  Google Scholar 

  83. Radha R, Srinivasan A, Manimuthu P, Balakumar S (2015) Tailored sunlight driven nano-photocatalyst: bismuth iron tungstate (BiFeWO6). J Mater Chem C 3(39):10285–10292

    Article  Google Scholar 

  84. Luan J, Guo N, Chen B (2014) Hydrogen production with Ga2BiSbO7, Fe2BiSbO7 and Gd2BiSbO7 as photocatalysts under visible light irradiation. Int J Hydrogen Energy 39(3):1228–1236

    Article  Google Scholar 

  85. Cao J, Kako T, Li P, Ouyang S, Ye J (2011) Fabrication of p-type CaFe2O4 nanofilms for photoelectrochemical hydrogen generation. Electrochem Commun 13(3):275–278

    Article  Google Scholar 

  86. Dom R, Subasri R, Hebalkar NY, Chary AS, Borse PH (2012) Synthesis of a hydrogen producing nanocrystalline ZnFe2O4 visible light photocatalyst using a rapid microwave irradiation method. RSC Adv 2(33):12782

    Article  Google Scholar 

  87. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278

    Article  Google Scholar 

  88. Klahr BM, Hamann TW (2011) Current and voltage limiting processes in thin film hematite electrodes. J Phys Chem C 115(16):8393–8399

    Article  Google Scholar 

  89. Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW (2012) Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energ Environ Sci. 5(6):7626–7636

    Article  Google Scholar 

  90. Klahr BM, Martinson ABF, Hamann TW (2011) Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Langmuir 27(1):461–468

    Article  Google Scholar 

  91. Kay A, Cesar I, Grätzel M (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc 128(49):15714–15721

    Article  Google Scholar 

  92. Mangrulkar PA, Polshettiwar V, Labhsetwar NK, Varma RS, Rayalu SS (2012) Nano-ferrites for water splitting: unprecedented high photocatalytic hydrogen production under visible light. Nanoscale. 4(16):5202

    Article  Google Scholar 

  93. Murugesan S, Huda MN, Yan Y, Al-Jassim MM, Subramanian V (2010) Band-engineered bismuth titanate pyrochlores for visible light photocatalysis. J Phys Chem C 114(23):10598–10605

    Article  Google Scholar 

  94. Zhou D, Yang H, Tu Y, Tian Y, Cai Y, Hu Z, et al (2016) In situ fabrication of Bi2Ti2O7/TiO2 heterostructure submicron fibers for enhanced photocatalytic activity. Nanoscale Res Lett 11(1)

    Google Scholar 

  95. McInnes A, Sagu JS, Wijayantha KGU (2014) Fabrication and photoelectrochemical studies of Bi2Ti2O7 pyrochlore thin films by aerosol assisted chemical vapour deposition. Mater Lett 137:214–217

    Article  Google Scholar 

  96. Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121(49):11459–11467

    Article  Google Scholar 

  97. Seabold JA, Choi K-S (2012) Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J Am Chem Soc 134(4):2186–2192

    Article  Google Scholar 

  98. Sun S, Wang W, Li D, Zhang L, Jiang D (2014) Solar light driven pure water splitting on quantum sized BiVO4 without any cocatalyst. ACS Catal 4(10):3498–3503

    Article  Google Scholar 

  99. Maeda K, Teramura K, Saito N, Inoue Y, Kobayashi H, Domen K (2006) Overall water splitting using (oxy)nitride photocatalysts. Pure Appl Chem 78(12)

    Google Scholar 

  100. Moriya Y, Takata T, Domen K (2013) Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord Chem Rev 257(13–14):1957–1969

    Article  Google Scholar 

  101. Takata T, Pan C, Domen K (2016) Recent progress in oxynitride photocatalysts for visible-light-driven water splitting. Sci Technol Adv Mater 16(3):033506

    Article  Google Scholar 

  102. Bamwenda GR, Sayama K, Arakawa H (1999) The effect of selected reaction parameters on the photoproduction of oxygen and hydrogen from a WO3–Fe2+–Fe3+ aqueous suspension. J Photochem Photobiol, A 122(3):175–183

    Article  Google Scholar 

  103. Tanaka A, Hashimoto K, Kominami H (2014) Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. J Am Chem Soc 136(2):586–589

    Article  Google Scholar 

  104. Zhang LJ, Li S, Liu BK, Wang DJ, Xie TF (2014) Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal 4(10):3724–3729

    Article  Google Scholar 

  105. Juan M, Coronado FF, Hernández-Alonso MD, Portela R (2013) Design of advanced photocatalytic materials for energy and environmental applications. Springer, Berlin

    Google Scholar 

  106. Samadi M, Zirak M, Naseri A, Khorashadizade E, Moshfegh AZ (2016) Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605:2–19

    Article  Google Scholar 

  107. Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98(51):13669–13679

    Article  Google Scholar 

  108. H-y Lin, C-y Shih (2016) Efficient one-pot microwave-assisted hydrothermal synthesis of M (M=Cr, Ni, Cu, Nb) and nitrogen co-doped TiO2 for hydrogen production by photocatalytic water splitting. J Mol Catal A: Chem 411:128–137

    Article  Google Scholar 

  109. Dholam R, Patel N, Adami M, Miotello A (2009) Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrogen Energy 34(13):5337–5346

    Article  Google Scholar 

  110. Selcuk MZ, Boroglu MS, Boz I (2012) Hydrogen production by photocatalytic water-splitting using nitrogen and metal co-doped TiO2 powder photocatalyst. React Kinet, Mech Catal 106(2):313–324

    Article  Google Scholar 

  111. Sun T, Fan J, Liu E, Liu L, Wang Y, Dai H et al (2012) Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: application in hydrogen evolution by water splitting under visible light irradiation. Powder Technol 228:210–218

    Article  Google Scholar 

  112. Banerjee B, Amoli V, Maurya A, Sinha AK, Bhaumik A (2015) Green synthesis of Pt-doped TiO2 nanocrystals with exposed (001) facets and mesoscopic void space for photo-splitting of water under solar irradiation. Nanoscale. 7(23):10504–10512

    Article  Google Scholar 

  113. Jiang Z, Liu D, Jiang D, Wei W, Qian K, Chen M et al (2014) Bamboo leaf-assisted formation of carbon/nitrogen co-doped anatase TiO2 modified with silver and graphitic carbon nitride: novel and green synthesis and cooperative photocatalytic activity. Dalton Trans 43(36):13792

    Article  Google Scholar 

  114. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110(48):24287–24293

    Article  Google Scholar 

  115. Su J, Zou X, Chen J-S (2014) Self-modification of titanium dioxide materials by Ti3+ and/or oxygen vacancies: new insights into defect chemistry of metal oxides. RSC Adv 4(27):13979

    Article  Google Scholar 

  116. Fu G, Zhou P, Zhao M, Zhu W, Yan S, Yu T et al (2015) Carbon coating stabilized Ti3+-doped TiO2 for photocatalytic hydrogen generation under visible light irradiation. Dalton Trans 44(28):12812–12817

    Article  Google Scholar 

  117. Qiu B, Zhou Y, Ma Y, Yang X, Sheng W, Xing M et al (2015) Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis. Sci Rep 5:8591

    Article  Google Scholar 

  118. Serra M, Baldovi HG, Albarracin F, Garcia H (2016) Visible light photocatalytic activity for hydrogen production from water–methanol mixtures of open-framework V-doped mixed-valence titanium phosphate. Appl Catal B 183:159–167

    Article  Google Scholar 

  119. Strataki N, Antoniadou M, Dracopoulos V, Lianos P (2010) Visible-light photocatalytic hydrogen production from ethanol–water mixtures using a Pt–CdS–TiO2 photocatalyst. Catal Today 151(1–2):53–57

    Article  Google Scholar 

  120. Jang J, Kim H, Joshi U, Jang J, Lee J (2008) Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. Int J Hydrogen Energy 33(21):5975–5980

    Article  Google Scholar 

  121. Yun HJ, Lee H, Kim ND, Lee DM, Yu S, Yi J (2011) A combination of two visible-light responsive photocatalysts for achieving the z-scheme in the solid state. ACS Nano 5(5):4084–4090

    Article  Google Scholar 

  122. Yan J, Wu H, Chen H, Zhang Y, Zhang F, Liu SF (2016) Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl Catal B 191:130–137

    Article  Google Scholar 

  123. Jian Z, Huang S, Cao Y, Zhang Y (2016) Hydrothermal preparation and characterization of TiO2/BiVO4 composite catalyst and its photolysis of water to produce hydrogen. Photochem Photobiol 92(3):363–370

    Article  Google Scholar 

  124. Li J, Yuan H, Zhu Z (2015) Fabrication of Cu2O/Au/BiPO4 Z-scheme photocatalyst to improve the photocatalytic activity under solar light. J Mol Catal A: Chem 410:133–139

    Article  Google Scholar 

  125. Jia X, Tahir M, Pan L, Huang Z-F, Zhang X, Wang L et al (2016) Direct Z-scheme composite of CdS and oxygen-defected CdWO4: an efficient visible-light-driven photocatalyst for hydrogen evolution. Appl Catal B 198:154–161

    Article  Google Scholar 

  126. Li H, Yu H, Quan X, Chen S, Zhang Y (2016) Uncovering the key role of the fermi level of the electron mediator in a Z-Scheme photocatalyst by detecting the charge transfer process of WO3-metal-gC3N4 (Metal=Cu, Ag, Au). ACS Appl Mater Interfaces 8(3):2111–2119

    Article  Google Scholar 

  127. Zhang X, Zhang L, Xie T, Wang D (2009) Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J Phys Chem C 113(17):7371–7378

    Article  Google Scholar 

  128. Zhu W, Han D, Niu L, Wu T, Guan H (2016) Z-scheme Si/MgTiO3 porous heterostructures: noble metal and sacrificial agent free photocatalytic hydrogen evolution. Int J Hydrogen Energy 41(33):14713–14720

    Article  Google Scholar 

  129. Pan Z, Hisatomi T, Wang Q, Chen S, Nakabayashi M, Shibata N et al (2016) Photocatalyst sheets composed of particulate LaMg1/3Ta2/3O2N and Mo-Doped BiVO4 for Z-scheme water splitting under visible light. ACS Catalysis 6(10):7188–7196

    Article  Google Scholar 

  130. Maeda K, Lu D, Domen K (2013) Solar-driven z-scheme water splitting using modified BaZrO3–BaTaO2N solid solutions as photocatalysts. ACS Catalysis. 3(5):1026–1033

    Article  Google Scholar 

  131. Xu L, Shi W, Guan J (2012) Preparation of crystallized mesoporous CdS/Ta2O5 composite assisted by silica reinforcement for visible light photocatalytic hydrogen evolution. Catal Commun 25:54–58

    Article  Google Scholar 

  132. Xu L, Guan J, Gao L, Sun Z (2011) Preparation of heterostructured mesoporous In2O3/Ta2O5 nanocomposites with enhanced photocatalytic activity for hydrogen evolution. Catal Commun 12(6):548–552

    Article  Google Scholar 

  133. Xu L, Guan J, Shi W (2012) Enhanced interfacial charge transfer and visible photocatalytic activity for hydrogen evolution from a Ta2O5-based mesoporous composite by the incorporation of quantum-sized CdS. ChemCatChem 4(9):1353–1359

    Article  Google Scholar 

  134. Agegnehu AK, Pan C-J, Tsai M-C, Rick J, Su W-N, Lee J-F et al (2016) Visible light responsive noble metal-free nanocomposite of V-doped TiO2 nanorod with highly reduced graphene oxide for enhanced solar H2 production. Int J Hydrogen Energy 41(16):6752–6762

    Article  Google Scholar 

  135. Mukherji A, Seger B, Lu GQ, Wang L (2011) Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production. ACS Nano 5(5):3483–3492

    Article  Google Scholar 

  136. Adhikari SP, Hood ZD, More KL, Ivanov I, Zhang L, Gross M et al (2015) Visible light assisted photocatalytic hydrogen generation by Ta2O5/Bi2O3, TaON/Bi2O3, and Ta3N5/Bi2O3composites. RSC Adv 5(68):54998–55005

    Article  Google Scholar 

  137. Naik B, Martha S, Parida KM (2011) Facile fabrication of Bi2O3/TiO2−x N x nanocomposites for excellent visible light driven photocatalytic hydrogen evolution. Int J Hydrogen Energy 36(4):2794–2802

    Article  Google Scholar 

  138. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37

    Google Scholar 

  139. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42(6):2294–2320

    Article  Google Scholar 

  140. Maeda K (2013) Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal 3:1486–1503

    Article  Google Scholar 

  141. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278

    Article  Google Scholar 

  142. Radhakrishnan AN, Rao PP, Linsa KS, Deepa M, Koshy P (2011) Influence of disorder-to-order transition on lattice thermal expansion and oxide ion conductivity in (Ca(x)Gd(1−x))(2)(Zr(1−x)M(x))2O7 pyrochlore solid solutions. Dalton Trans 40(15):3839–3848

    Article  Google Scholar 

  143. Sasaki Y, Kato H, Kudo A (2013) [Co(bpy)3](3+/2+) and [Co(phen)3](3+/2+) electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J Am Chem Soc 135:5441–5449

    Article  Google Scholar 

  144. Sasaki Y, Nemoto H, Saito K, Kudo A (2009) Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J Phys Chem C 113

    Google Scholar 

  145. Fujihara K (1998) TO, M. Matsumura. Splitting of water by electrochemical combination of two photocatalytic reactions on particles. J Chem Soc, Faraday Trans 94:3705–3709

    Article  Google Scholar 

  146. Kato H, Hori M, Konta R, Shimodaira Y, Kudo A (2004) Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradia. Chem Lett 33:1348–1349

    Google Scholar 

  147. Abe R, Sayama K, Domen K, Arakawa H (2001) A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and IO3−/I shuttle redox mediator. Chem Phys Lett 344:339–344

    Google Scholar 

  148. Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C (2016) Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1. Nat Mater 15(6):611–615

    Article  Google Scholar 

  149. Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R (2011) Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc 133:11054–11057

    Article  Google Scholar 

  150. Sayama K, Yoshida R, Kusama H, Okabe K, Abe Y, Arakawa H (1997) Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+:Fe2+ redox system. Chem Phys Lett 277:387–391

    Google Scholar 

  151. Tennakone K, Tantrigoda R, Abeysinghe S, Punchihewa S, Fernando CA (1990) Water photolysis via reversible oxidation and reduction between MnO2 and MnO4 2−. J Photochem Photobiol, A-Chem 52:43–46

    Google Scholar 

  152. Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2001) Arakawa. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I shuttle redox mediator under visible light irradiation. Chem Commun 2416–2417

    Google Scholar 

  153. Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132:5858–5868

    Google Scholar 

  154. Yan J, Wu H, Chen H, Zhang Y, Zhang F, Liu SF (2016) Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl Catal B-Environ 191:130–137

    Google Scholar 

  155. Jia Q, Iwase A, Kudo A (2014) BiVO4–Ru/SrTiO3:Rh composite Z-scheme photocatalyst for solar water splitting. Chem Sci 5:1513–1519

    Google Scholar 

  156. Wang Q, Hisatomi T, Suzuki Y, Pan Z, Seo J, Katayama M et al (2017) Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J Am Chem Soc 139(4):1675–1683

    Article  Google Scholar 

  157. Pan Z, Hisatomi T, Wang Q, Chen S, Iwase A, Nakabayashi M, Shibata N, Takata T, Katayama M, Minegishi T, Kudo A, Domen K (2016) Photoreduced graphene oxide as a conductive binder to improve the water splitting activity of photocatalyst sheets. Adv Funct Mater 26:7011–7019

    Google Scholar 

  158. Pan Z, Hisatomi T, Wang Q, Chen S, Iwase A, Nakabayashi M, Shibata N, Takata T, Katayama M, Minegishi T, Kudo A, Domen K (2016) Photocatalyst sheets composed of particulate LaMg1:3Ta2:3O2N and Mo-doped BiVO4 for Z-scheme water splitting under visible light. ACS Catal 6:7188–7196

    Google Scholar 

  159. Doscher H, Young JL, Geisz JF, Turner JA, Deutsch TG (2016) Solar-to-hydrogen efficiency: shining light on photoelectrochemical device performance. Energy Environ Sci 9(1):74–80

    Article  Google Scholar 

  160. Murphy AB, Barnes PRF, Randeniya LK, Plumb IC, Grey IE, Horne MD et al (2006) Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrogen Energy 31(14):1999–2017

    Article  Google Scholar 

  161. Harald M, Andreas I, Robert K, Willem Z, Heinz AO, Ewan DD (2005) Spectral mismatch in calibration of photovoltaic reference devices by global sunlight method. Meas Sci Technol 16(6):1250

    Article  Google Scholar 

  162. Kato H, Sasaki Y, Shirakura N, Kudo A (2013) Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. J Mater Chem A. 1(39):12327–12333

    Article  Google Scholar 

  163. Sasaki Y, Kato H, Kudo A (2013) [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J Am Chem Soc 135(14):5441–5449

    Article  Google Scholar 

  164. Wang Q, Hisatomi T, Ma SSK, Li Y, Domen K (2014) Core/shell structured La- and Rh-codoped SrTiO3 as a hydrogen evolution photocatalyst in Z-scheme overall water splitting under visible light irradiation. Chem Mater 26(14):4144–4150

    Article  Google Scholar 

  165. Wang Q, Hisatomi T, Suzuki Y, Pan Z, Seo J, Katayama M et al (2017) Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J Am Chem Soc 139(4):1675–1683

    Article  Google Scholar 

  166. Youn DH, Jang J-W, Kim JY, Jang JS, Choi SH, Lee JS (2014) Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing. Sci Rep 4:5492

    Article  Google Scholar 

  167. Li Y, Zhang L, Torres-Pardo A, González-Calbet JM, Ma Y, Oleynikov P et al (2013) Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat Commun 4:2566

    Google Scholar 

  168. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mat Chem A 3(6):2485–2534

    Article  Google Scholar 

  169. Doscher H, Geisz JF, Deutsch TG, Turner JA (2014) Sunlight absorption in water—efficiency and design implications for photoelectrochemical devices. Energy Environ Sci 7(9):2951–2956

    Article  Google Scholar 

  170. Liao L, Zhang Q, Su Z, Zhao Z, Wang Y, Li Y et al (2014) Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat Nano. 9(1):69–73

    Article  Google Scholar 

  171. Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H et al (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225):970–974

    Article  Google Scholar 

  172. Escobedo Salas S, Serrano Rosales B, de Lasa H (2013) Quantum yield with platinum modified TiO2 photocatalyst for hydrogen production. Appl Catal B: Environ 140–141:523–536

    Article  Google Scholar 

  173. Souza VS, Scholten JD, Weibel DE, Eberhardt D, Baptista DL, Teixeira SR et al (2016) Hybrid tantalum oxide nanoparticles from the hydrolysis of imidazolium tantalate ionic liquids: efficient catalysts for hydrogen generation from ethanol/water solutions. J Mater Chem A. 4(19):7469–7475

    Article  Google Scholar 

  174. Chen S, Shen S, Liu G, Qi Y, Zhang F, Li C (2015) Interface engineering of a CoO x /Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew Chem Int Ed 54(10):3047–3051

    Article  Google Scholar 

  175. Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132(16):5858–5868

    Article  Google Scholar 

  176. Martin DJ, Qiu K, Shevlin SA, Handoko AD, Chen X, Guo Z et al (2014) Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew Chem Int Ed 53(35):9240–9245

    Article  Google Scholar 

  177. Li J, Wu N (2015) Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Technol 5(3):1360–1384

    Article  Google Scholar 

  178. May MM, Lewerenz H-J, Lackner D, Dimroth F, Hannappel T (2015) Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat Commun 6:8286

    Article  Google Scholar 

  179. Khan S, Santos MJL, Malfatti CF, Dupont J, Teixeira SR (2016) Pristine Ta3N5 nanotubes: trap-driven high external biasing perspective in semiconductor/electrolyte interfaces. Chem Eur J 22(51):18501–18511

    Article  Google Scholar 

  180. Chen XB, Shen SH, Guo LJ, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato V. Gonçalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Gonçalves, R.V., Wender, H., Khan, S., Melo, M.A. (2018). Photocatalytic Water Splitting by Suspended Semiconductor Particles. In: Souza, F., Leite, E. (eds) Nanoenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-62800-4_3

Download citation

Publish with us

Policies and ethics