Advertisement

Nanoenergy pp 107-140 | Cite as

Photocatalytic Water Splitting by Suspended Semiconductor Particles

  • Renato V. GonçalvesEmail author
  • Heberton Wender
  • Sherdil Khan
  • Mauricio A. MeloJr.
Chapter

Abstract

Starting and emphasizing the importance for future demand on Earth energy feed, this chapter discusses the state-of-the-art of photocatalytic water splitting (PWS) using suspended particles for hydrogen evolution. Herein, the thermodynamics requirements for photocatalyst semiconductors for water splitting for efficient hydrogen and oxygen production, to date overview on important photocatalysts and related fine-tuning processes adopted to meet the desired properties for PWS with improved photocatalytic activities, a profound discussion and review about tandem photocatalyst systems are covered. A descriptive discussion on efficiency determination including solar-to-hydrogen efficiency and apparent quantum efficiency to compare the photocatalytic performance of the photocatalysts is presented.

References

  1. 1.
    Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzyme Microb Technol 38(5):569–582CrossRefGoogle Scholar
  2. 2.
    Shi Z, Wen X, Guan Z, Cao D, Luo W, Zou Z (2015) Recent progress in photoelectrochemical water splitting for solar hydrogen production. Ann Phys 358:236–247CrossRefGoogle Scholar
  3. 3.
    Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photon 6(8):511–518CrossRefGoogle Scholar
  4. 4.
    Frank Osterloh BAP (2011) Recent developments in solar water-splitting photocatalysis. MRS Bull 36(1):17–22Google Scholar
  5. 5.
    Fan Y, Li D, Deng M, Luo Y, Meng Q (2009) An overview on water splitting photocatalysts. Front Chem China 4(4):343–351CrossRefGoogle Scholar
  6. 6.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38CrossRefGoogle Scholar
  7. 7.
    Khan S, Zapata MJM, Baptista DL, Gonçalves RV, Fernandes JA, Dupont J, Santos MJL, Teixeira SR (2015) Effect of oxygen content on the photoelectrochemical activity of crystallographically preferred oriented porous Ta N nanotubes. J Phys Chem C 119(34):19906–19914Google Scholar
  8. 8.
    Khan S, Zapata MJM, Pereira MB, Gonçalves RV, Strizik L, Dupont J, Santos MJL, Teixeira SR (2015) Structural, optical and photoelectrochemical characterizations of monoclinic Ta N thin films. Phys Chem Chem Phys 17(37):23952–23962Google Scholar
  9. 9.
    Tee SY, Win KY, Teo WS, Koh L-D, Liu S, Teng CP, et al (2017) Recent progress in energy-driven water splitting. Adv Sci 4(5):1600337Google Scholar
  10. 10.
    Acar C, Dincer I, Naterer GF (2016) Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int J Energ Res 40(11):1449–1473Google Scholar
  11. 11.
    Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42(6):2294–2320Google Scholar
  12. 12.
    Barber J, Tran PD. From natural to artificial photosynthesis (2013). J Royal Soc Interface 10(81)Google Scholar
  13. 13.
    Teoh WY, Scott JA, Amal R (2012) Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J Phys Chem Lett 3(5):629–639CrossRefGoogle Scholar
  14. 14.
    Navarro Yerga RM, Álvarez Galván MC, del Valle F, Villoria de la Mano JA, Fierro JLG (2009) Water splitting on semiconductor catalysts under visible-light irradiation. Chemsuschem 2(6):471–485Google Scholar
  15. 15.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278CrossRefGoogle Scholar
  16. 16.
    Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. Chemsuschem 4(4):432–449Google Scholar
  17. 17.
    Grimes CA, Varghese OK, Ranjan S (2008) Light, water, hydrogen the solar generation of hydrogen by water photoelectrolysis. Springer, New York, p 517. ISBN: 978-0-387-33198-0 (Print) 978-0-387-68238-9 (Online)Google Scholar
  18. 18.
    Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, et al (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energ Environ Sci 6(7):1983–2002Google Scholar
  19. 19.
    Yuan Y-P, Ruan L-W, Barber J, Joachim Loo SC, Xue C (2014) Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energ Environ Sci 7(12):3934–3951CrossRefGoogle Scholar
  20. 20.
    Osterloh FE (2014) Boosting the efficiency of suspended photocatalysts for overall water splitting. J Phys Chem Lett 5(15):2510–2511CrossRefGoogle Scholar
  21. 21.
    Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C, et al (2016) Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat Mater 15(6):611–615 (advance online publication)Google Scholar
  22. 22.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, et al (2011) Solar water splitting cells (vol 110, pg 6446, 2010). Chem Rev 111(9):5815Google Scholar
  23. 23.
    Chen X, Li C, Gratzel M, Kostecki R, Mao SS (2012) Nanomaterials for renewable energy production and storage. Chem Soc Rev 41(23):7909–7937CrossRefGoogle Scholar
  24. 24.
    Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 99(45):16646–16654CrossRefGoogle Scholar
  25. 25.
    Fan W, Zhang Q, Wang Y (2013) Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Phys Chem Chem Phys 15(8):2632–2649CrossRefGoogle Scholar
  26. 26.
    Jafari T, Moharreri E, Amin A, Miao R, Song W, Suib S (2016) Photocatalytic water splitting—the untamed dream: a review of recent advances. Molecules 21(7):900CrossRefGoogle Scholar
  27. 27.
    Yang J, Yan H, Zong X, Wen F, Liu M, Li C (2013) Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production. Phil Trans Royal Soc A: Math, Phys Eng Sci 371(1996)Google Scholar
  28. 28.
    Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ (2014) Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev 43(22):7787–7812Google Scholar
  29. 29.
    Wang D, Hisatomi T, Takata T, Pan C, Katayama M, Kubota J et al (2013) Core/shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water. Angew Chem Int Ed 52(43):11252–11256CrossRefGoogle Scholar
  30. 30.
    Maeda K, Xiong A, Yoshinaga T, Ikeda T, Sakamoto N, Hisatomi T et al (2010) Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. Angew Chem Int Ed 49(24):4096–4099CrossRefGoogle Scholar
  31. 31.
    Wang D, Li R, Zhu J, Shi J, Han J, Zong X et al (2012) Photocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst. J Phys Chem C 116(8):5082–5089CrossRefGoogle Scholar
  32. 32.
    Breault TM, Brancho JJ, Guo P, Bartlett BM (2013) Visible light water oxidation using a co-catalyst loaded anatase-structured ti1–(5x/4)NbxO2–y–δNy Compound. Inorg Chem 52(16):9363–9368CrossRefGoogle Scholar
  33. 33.
    Ma SSK, Maeda K, Abe R, Domen K (2012) Visible-light-driven nonsacrificial water oxidation over tungsten trioxide powder modified with two different cocatalysts. Energ Environ Sci 5(8):8390–8397CrossRefGoogle Scholar
  34. 34.
    Meekins BH, Kamat PV (2011) Role of water oxidation catalyst IrO2 in shuttling photogenerated holes across TiO2 interface. J Phys Chem Lett 2(18):2304–2310CrossRefGoogle Scholar
  35. 35.
    Asai R, Nemoto H, Jia Q, Saito K, Iwase A, Kudo A (2014) A visible light responsive rhodium and antimony-codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting. Chem Commun 50(19):2543–2546CrossRefGoogle Scholar
  36. 36.
    Ma B, Yang J, Han H, Wang J, Zhang X, Li C (2010) Enhancement of photocatalytic water oxidation activity on IrOx–ZnO/Zn2–xGeO4–x–3yN2y catalyst with the solid solution phase junction. J Phys Chem C 114(29):12818–12822CrossRefGoogle Scholar
  37. 37.
    Ai G, Mo R, Li H, Zhong J (2015) Cobalt phosphate modified TiO2 nanowire arrays as co-catalysts for solar water splitting. Nanoscale 7(15):6722–6728CrossRefGoogle Scholar
  38. 38.
    Kraeutler B, Bard AJ (1978) Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates. J Am Chem Soc 100(13):4317–4318CrossRefGoogle Scholar
  39. 39.
    López R, Gómez R (2011) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61(1):1–7CrossRefGoogle Scholar
  40. 40.
    Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43(22):7520–7535CrossRefGoogle Scholar
  41. 41.
    Takata T, Tanaka A, Hara M, Kondo JN, Domen K (1998) Recent progress of photocatalysts for overall water splitting. Catal Today 44(1–4):17–26CrossRefGoogle Scholar
  42. 42.
    Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. materials-related aspects. Int J Hydrogen Energy 27(10):991–1022CrossRefGoogle Scholar
  43. 43.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959CrossRefGoogle Scholar
  44. 44.
    Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11(3):401–425CrossRefGoogle Scholar
  45. 45.
    Hernandez-Alonso MD, Fresno F, Suarez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2(12):1231–1257CrossRefGoogle Scholar
  46. 46.
    Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570CrossRefGoogle Scholar
  47. 47.
    Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1(18):2655–2661CrossRefGoogle Scholar
  48. 48.
    Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA et al (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473CrossRefGoogle Scholar
  49. 49.
    Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG et al (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349CrossRefGoogle Scholar
  50. 50.
    Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42(6):2294–2320CrossRefGoogle Scholar
  51. 51.
    Sivula K, van de Krol R. Semiconducting materials for photoelectrochemical energy conversion. Nat Rev Mat 16010Google Scholar
  52. 52.
    Gonçalves RV, Migowski P, Wender H, Eberhardt D, Weibel DE, Sonaglio FC et al (2012) Ta2O5 nanotubes obtained by anodization: effect of thermal treatment on the photocatalytic activity for hydrogen production. J Phys Chem C 116(26):14022–14030CrossRefGoogle Scholar
  53. 53.
    Li Z, Liu J, Li J, Shen J (2012) Template free synthesis of crystallized nanoporous F-Ta2O5 spheres for effective photocatalytic hydrogen production. Nanoscale 4(13):3867–3870CrossRefGoogle Scholar
  54. 54.
    Noda Y, Lee B, Domen K, Kondo JN (2008) Synthesis of crystallized mesoporous tantalum oxide and its photocatalytic activity for overall water splitting under ultraviolet light irradiation. Chem Mater 20(16):5361–5367CrossRefGoogle Scholar
  55. 55.
    Lin S, Shi L, Yoshida H, Li M, Zou X (2013) Synthesis of hollow spherical tantalum oxide nanoparticles and their photocatalytic activity for hydrogen production. J Solid State Chem 199:15–20CrossRefGoogle Scholar
  56. 56.
    Cherevan AS, Gebhardt P, Shearer CJ, Matsukawa M, Domen K, Eder D (2014) Interface engineering in nanocarbon-Ta2O5 hybrid photocatalysts. Energy Environ Sci 7(2):791–796CrossRefGoogle Scholar
  57. 57.
    Sato S, White JM (1980) Photodecomposition of water over Pt/TiO2 catalysts. Chem Phys Lett 72(1):83–86CrossRefGoogle Scholar
  58. 58.
    Munuera G, Gonzalez-Elipe AR, Fernandez A, Malet P, Espinos JP (1989) Spectroscopic characterisation and photochemical behaviour of a titanium hydroxyperoxo compound. J Chem Soc, Faraday Trans 1: Phys Chem Condens Phases 85(6):1279–1290CrossRefGoogle Scholar
  59. 59.
    Duonghong D, Borgarello E, Graetzel M (1981) Dynamics of light-induced water cleavage in colloidal systems. J Am Chem Soc 103(16):4685–4690CrossRefGoogle Scholar
  60. 60.
    Galińska A, Walendziewski J (2005) Photocatalytic water splitting over Pt–TiO2 in the presence of sacrificial reagents. Energy Fuels 19(3):1143–1147CrossRefGoogle Scholar
  61. 61.
    Wender H, Feil AF, Diaz LB, Ribeiro CS, Machado GJ, Migowski P et al (2011) Self-organized TiO2 nanotube arrays: synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. ACS Appl Mater Interfaces 3(4):1359–1365CrossRefGoogle Scholar
  62. 62.
    Kamat PV (2010) Graphene-based nanoarchitectures. anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1(2):520–527CrossRefGoogle Scholar
  63. 63.
    Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4(1):380–386CrossRefGoogle Scholar
  64. 64.
    Xiang Q, Yu J, Jaroniec M (2011) Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 3(9):3670–3678CrossRefGoogle Scholar
  65. 65.
    Zhang XY, Li HP, Cui XL (2009) Preparation and photocatalytic activity for hydrogen evolution of TiO2/graphene sheets composite. Chin J Inorg Chem 25(11):1903–1907Google Scholar
  66. 66.
    Zhang X-Y, Li H-P, Cui X-L, Lin Y (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20(14):2801CrossRefGoogle Scholar
  67. 67.
    Yeh T-F, Syu J-M, Cheng C, Chang T-H, Teng H (2010) Graphite oxide as a photocatalyst for hydrogen production from water. Adv Func Mater 20(14):2255–2262CrossRefGoogle Scholar
  68. 68.
    Babu SG, Vinoth R, Praveen Kumar D, Shankar MV, Chou H-L, Vinodgopal K et al (2015) Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p–n heterojunction for increased hydrogen production. Nanoscale 7(17):7849–7857CrossRefGoogle Scholar
  69. 69.
    Kudo A, Niishiro R, Iwase A, Kato H (2007) Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts. Chem Phys 339(1–3):104–110CrossRefGoogle Scholar
  70. 70.
    Hu C-C, Teng H (2010) Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting. J Catal 272(1):1–8CrossRefGoogle Scholar
  71. 71.
    Zhu Y, Salvador PA, Rohrer GS (2016) Controlling the relative areas of photocathodic and photoanodic terraces on the SrTiO3(111) Surface. Chem Mater 28(14):5155–5162CrossRefGoogle Scholar
  72. 72.
    Wagner FT, Somorjai GA (1980) Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals. J Am Chem Soc 102(17):5494–5502CrossRefGoogle Scholar
  73. 73.
    van Benthem K, Elsässer C, French RH (2001) Bulk electronic structure of SrTiO3: experiment and theory. J Appl Phys 90(12):6156–6164CrossRefGoogle Scholar
  74. 74.
    Townsend TK, Browning ND, Osterloh FE (2012) Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano 6(8):7420–7426CrossRefGoogle Scholar
  75. 75.
    Townsend TK, Browning ND, Osterloh FE (2012) Overall photocatalytic water splitting with NiOx–SrTiO3—a revised mechanism. Energy Environ Sci 5(11):9543CrossRefGoogle Scholar
  76. 76.
    Mu L, Zhao Y, Li A, Wang S, Wang Z, Yang J et al (2016) Enhancing charge separation on high symmetry SrTiO3exposed with anisotropic facets for photocatalytic water splitting. Energy Environ Sci 9(7):2463–2469CrossRefGoogle Scholar
  77. 77.
    Wender H, Gonçalves RV, Dias CSB, Zapata MJM, Zagonel LF, Mendonça EC et al (2013) Photocatalytic hydrogen production of Co(OH)2 nanoparticle-coated α-Fe2O3 nanorings. Nanoscale 5(19):9310CrossRefGoogle Scholar
  78. 78.
    Darwent JR, Mills A. Photo-oxidation of water sensitized by WO3 powder (1982) J Chem Soc, Faraday Trans 2 78(2):359Google Scholar
  79. 79.
    Erbs W, Desilvestro J, Borgarello E, Graetzel M (1984) Visible-light-induced oxygen generation from aqueous dispersions of tungsten(VI) oxide. J Phys Chem 88(18):4001–4006CrossRefGoogle Scholar
  80. 80.
    Shimodaira Y, Kato H, Kobayashi H, Kudo A (2006) Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J Phys Chem B 110(36):17790–17797CrossRefGoogle Scholar
  81. 81.
    Kudo A, Hijii S (1999) H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem Lett 28(10):1103–1104CrossRefGoogle Scholar
  82. 82.
    Wang D, Tang J, Zou Z, Ye J (2005) Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M3V2O8 (M=Mg, Ni, Zn). Chem Mater 17(20):5177–5182CrossRefGoogle Scholar
  83. 83.
    Radha R, Srinivasan A, Manimuthu P, Balakumar S (2015) Tailored sunlight driven nano-photocatalyst: bismuth iron tungstate (BiFeWO6). J Mater Chem C 3(39):10285–10292CrossRefGoogle Scholar
  84. 84.
    Luan J, Guo N, Chen B (2014) Hydrogen production with Ga2BiSbO7, Fe2BiSbO7 and Gd2BiSbO7 as photocatalysts under visible light irradiation. Int J Hydrogen Energy 39(3):1228–1236CrossRefGoogle Scholar
  85. 85.
    Cao J, Kako T, Li P, Ouyang S, Ye J (2011) Fabrication of p-type CaFe2O4 nanofilms for photoelectrochemical hydrogen generation. Electrochem Commun 13(3):275–278CrossRefGoogle Scholar
  86. 86.
    Dom R, Subasri R, Hebalkar NY, Chary AS, Borse PH (2012) Synthesis of a hydrogen producing nanocrystalline ZnFe2O4 visible light photocatalyst using a rapid microwave irradiation method. RSC Adv 2(33):12782CrossRefGoogle Scholar
  87. 87.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278CrossRefGoogle Scholar
  88. 88.
    Klahr BM, Hamann TW (2011) Current and voltage limiting processes in thin film hematite electrodes. J Phys Chem C 115(16):8393–8399CrossRefGoogle Scholar
  89. 89.
    Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW (2012) Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energ Environ Sci. 5(6):7626–7636CrossRefGoogle Scholar
  90. 90.
    Klahr BM, Martinson ABF, Hamann TW (2011) Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Langmuir 27(1):461–468CrossRefGoogle Scholar
  91. 91.
    Kay A, Cesar I, Grätzel M (2006) New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J Am Chem Soc 128(49):15714–15721CrossRefGoogle Scholar
  92. 92.
    Mangrulkar PA, Polshettiwar V, Labhsetwar NK, Varma RS, Rayalu SS (2012) Nano-ferrites for water splitting: unprecedented high photocatalytic hydrogen production under visible light. Nanoscale. 4(16):5202CrossRefGoogle Scholar
  93. 93.
    Murugesan S, Huda MN, Yan Y, Al-Jassim MM, Subramanian V (2010) Band-engineered bismuth titanate pyrochlores for visible light photocatalysis. J Phys Chem C 114(23):10598–10605CrossRefGoogle Scholar
  94. 94.
    Zhou D, Yang H, Tu Y, Tian Y, Cai Y, Hu Z, et al (2016) In situ fabrication of Bi2Ti2O7/TiO2 heterostructure submicron fibers for enhanced photocatalytic activity. Nanoscale Res Lett 11(1)Google Scholar
  95. 95.
    McInnes A, Sagu JS, Wijayantha KGU (2014) Fabrication and photoelectrochemical studies of Bi2Ti2O7 pyrochlore thin films by aerosol assisted chemical vapour deposition. Mater Lett 137:214–217CrossRefGoogle Scholar
  96. 96.
    Kudo A, Omori K, Kato H (1999) A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J Am Chem Soc 121(49):11459–11467CrossRefGoogle Scholar
  97. 97.
    Seabold JA, Choi K-S (2012) Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J Am Chem Soc 134(4):2186–2192CrossRefGoogle Scholar
  98. 98.
    Sun S, Wang W, Li D, Zhang L, Jiang D (2014) Solar light driven pure water splitting on quantum sized BiVO4 without any cocatalyst. ACS Catal 4(10):3498–3503CrossRefGoogle Scholar
  99. 99.
    Maeda K, Teramura K, Saito N, Inoue Y, Kobayashi H, Domen K (2006) Overall water splitting using (oxy)nitride photocatalysts. Pure Appl Chem 78(12)Google Scholar
  100. 100.
    Moriya Y, Takata T, Domen K (2013) Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord Chem Rev 257(13–14):1957–1969CrossRefGoogle Scholar
  101. 101.
    Takata T, Pan C, Domen K (2016) Recent progress in oxynitride photocatalysts for visible-light-driven water splitting. Sci Technol Adv Mater 16(3):033506CrossRefGoogle Scholar
  102. 102.
    Bamwenda GR, Sayama K, Arakawa H (1999) The effect of selected reaction parameters on the photoproduction of oxygen and hydrogen from a WO3–Fe2+–Fe3+ aqueous suspension. J Photochem Photobiol, A 122(3):175–183CrossRefGoogle Scholar
  103. 103.
    Tanaka A, Hashimoto K, Kominami H (2014) Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. J Am Chem Soc 136(2):586–589CrossRefGoogle Scholar
  104. 104.
    Zhang LJ, Li S, Liu BK, Wang DJ, Xie TF (2014) Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal 4(10):3724–3729CrossRefGoogle Scholar
  105. 105.
    Juan M, Coronado FF, Hernández-Alonso MD, Portela R (2013) Design of advanced photocatalytic materials for energy and environmental applications. Springer, BerlinGoogle Scholar
  106. 106.
    Samadi M, Zirak M, Naseri A, Khorashadizade E, Moshfegh AZ (2016) Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605:2–19CrossRefGoogle Scholar
  107. 107.
    Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98(51):13669–13679CrossRefGoogle Scholar
  108. 108.
    H-y Lin, C-y Shih (2016) Efficient one-pot microwave-assisted hydrothermal synthesis of M (M=Cr, Ni, Cu, Nb) and nitrogen co-doped TiO2 for hydrogen production by photocatalytic water splitting. J Mol Catal A: Chem 411:128–137CrossRefGoogle Scholar
  109. 109.
    Dholam R, Patel N, Adami M, Miotello A (2009) Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst. Int J Hydrogen Energy 34(13):5337–5346CrossRefGoogle Scholar
  110. 110.
    Selcuk MZ, Boroglu MS, Boz I (2012) Hydrogen production by photocatalytic water-splitting using nitrogen and metal co-doped TiO2 powder photocatalyst. React Kinet, Mech Catal 106(2):313–324CrossRefGoogle Scholar
  111. 111.
    Sun T, Fan J, Liu E, Liu L, Wang Y, Dai H et al (2012) Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: application in hydrogen evolution by water splitting under visible light irradiation. Powder Technol 228:210–218CrossRefGoogle Scholar
  112. 112.
    Banerjee B, Amoli V, Maurya A, Sinha AK, Bhaumik A (2015) Green synthesis of Pt-doped TiO2 nanocrystals with exposed (001) facets and mesoscopic void space for photo-splitting of water under solar irradiation. Nanoscale. 7(23):10504–10512CrossRefGoogle Scholar
  113. 113.
    Jiang Z, Liu D, Jiang D, Wei W, Qian K, Chen M et al (2014) Bamboo leaf-assisted formation of carbon/nitrogen co-doped anatase TiO2 modified with silver and graphitic carbon nitride: novel and green synthesis and cooperative photocatalytic activity. Dalton Trans 43(36):13792CrossRefGoogle Scholar
  114. 114.
    Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110(48):24287–24293CrossRefGoogle Scholar
  115. 115.
    Su J, Zou X, Chen J-S (2014) Self-modification of titanium dioxide materials by Ti3+ and/or oxygen vacancies: new insights into defect chemistry of metal oxides. RSC Adv 4(27):13979CrossRefGoogle Scholar
  116. 116.
    Fu G, Zhou P, Zhao M, Zhu W, Yan S, Yu T et al (2015) Carbon coating stabilized Ti3+-doped TiO2 for photocatalytic hydrogen generation under visible light irradiation. Dalton Trans 44(28):12812–12817CrossRefGoogle Scholar
  117. 117.
    Qiu B, Zhou Y, Ma Y, Yang X, Sheng W, Xing M et al (2015) Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis. Sci Rep 5:8591CrossRefGoogle Scholar
  118. 118.
    Serra M, Baldovi HG, Albarracin F, Garcia H (2016) Visible light photocatalytic activity for hydrogen production from water–methanol mixtures of open-framework V-doped mixed-valence titanium phosphate. Appl Catal B 183:159–167CrossRefGoogle Scholar
  119. 119.
    Strataki N, Antoniadou M, Dracopoulos V, Lianos P (2010) Visible-light photocatalytic hydrogen production from ethanol–water mixtures using a Pt–CdS–TiO2 photocatalyst. Catal Today 151(1–2):53–57CrossRefGoogle Scholar
  120. 120.
    Jang J, Kim H, Joshi U, Jang J, Lee J (2008) Fabrication of CdS nanowires decorated with TiO2 nanoparticles for photocatalytic hydrogen production under visible light irradiation. Int J Hydrogen Energy 33(21):5975–5980CrossRefGoogle Scholar
  121. 121.
    Yun HJ, Lee H, Kim ND, Lee DM, Yu S, Yi J (2011) A combination of two visible-light responsive photocatalysts for achieving the z-scheme in the solid state. ACS Nano 5(5):4084–4090CrossRefGoogle Scholar
  122. 122.
    Yan J, Wu H, Chen H, Zhang Y, Zhang F, Liu SF (2016) Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl Catal B 191:130–137CrossRefGoogle Scholar
  123. 123.
    Jian Z, Huang S, Cao Y, Zhang Y (2016) Hydrothermal preparation and characterization of TiO2/BiVO4 composite catalyst and its photolysis of water to produce hydrogen. Photochem Photobiol 92(3):363–370CrossRefGoogle Scholar
  124. 124.
    Li J, Yuan H, Zhu Z (2015) Fabrication of Cu2O/Au/BiPO4 Z-scheme photocatalyst to improve the photocatalytic activity under solar light. J Mol Catal A: Chem 410:133–139CrossRefGoogle Scholar
  125. 125.
    Jia X, Tahir M, Pan L, Huang Z-F, Zhang X, Wang L et al (2016) Direct Z-scheme composite of CdS and oxygen-defected CdWO4: an efficient visible-light-driven photocatalyst for hydrogen evolution. Appl Catal B 198:154–161CrossRefGoogle Scholar
  126. 126.
    Li H, Yu H, Quan X, Chen S, Zhang Y (2016) Uncovering the key role of the fermi level of the electron mediator in a Z-Scheme photocatalyst by detecting the charge transfer process of WO3-metal-gC3N4 (Metal=Cu, Ag, Au). ACS Appl Mater Interfaces 8(3):2111–2119CrossRefGoogle Scholar
  127. 127.
    Zhang X, Zhang L, Xie T, Wang D (2009) Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J Phys Chem C 113(17):7371–7378CrossRefGoogle Scholar
  128. 128.
    Zhu W, Han D, Niu L, Wu T, Guan H (2016) Z-scheme Si/MgTiO3 porous heterostructures: noble metal and sacrificial agent free photocatalytic hydrogen evolution. Int J Hydrogen Energy 41(33):14713–14720CrossRefGoogle Scholar
  129. 129.
    Pan Z, Hisatomi T, Wang Q, Chen S, Nakabayashi M, Shibata N et al (2016) Photocatalyst sheets composed of particulate LaMg1/3Ta2/3O2N and Mo-Doped BiVO4 for Z-scheme water splitting under visible light. ACS Catalysis 6(10):7188–7196CrossRefGoogle Scholar
  130. 130.
    Maeda K, Lu D, Domen K (2013) Solar-driven z-scheme water splitting using modified BaZrO3–BaTaO2N solid solutions as photocatalysts. ACS Catalysis. 3(5):1026–1033CrossRefGoogle Scholar
  131. 131.
    Xu L, Shi W, Guan J (2012) Preparation of crystallized mesoporous CdS/Ta2O5 composite assisted by silica reinforcement for visible light photocatalytic hydrogen evolution. Catal Commun 25:54–58CrossRefGoogle Scholar
  132. 132.
    Xu L, Guan J, Gao L, Sun Z (2011) Preparation of heterostructured mesoporous In2O3/Ta2O5 nanocomposites with enhanced photocatalytic activity for hydrogen evolution. Catal Commun 12(6):548–552CrossRefGoogle Scholar
  133. 133.
    Xu L, Guan J, Shi W (2012) Enhanced interfacial charge transfer and visible photocatalytic activity for hydrogen evolution from a Ta2O5-based mesoporous composite by the incorporation of quantum-sized CdS. ChemCatChem 4(9):1353–1359CrossRefGoogle Scholar
  134. 134.
    Agegnehu AK, Pan C-J, Tsai M-C, Rick J, Su W-N, Lee J-F et al (2016) Visible light responsive noble metal-free nanocomposite of V-doped TiO2 nanorod with highly reduced graphene oxide for enhanced solar H2 production. Int J Hydrogen Energy 41(16):6752–6762CrossRefGoogle Scholar
  135. 135.
    Mukherji A, Seger B, Lu GQ, Wang L (2011) Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production. ACS Nano 5(5):3483–3492CrossRefGoogle Scholar
  136. 136.
    Adhikari SP, Hood ZD, More KL, Ivanov I, Zhang L, Gross M et al (2015) Visible light assisted photocatalytic hydrogen generation by Ta2O5/Bi2O3, TaON/Bi2O3, and Ta3N5/Bi2O3composites. RSC Adv 5(68):54998–55005CrossRefGoogle Scholar
  137. 137.
    Naik B, Martha S, Parida KM (2011) Facile fabrication of Bi2O3/TiO2−xNx nanocomposites for excellent visible light driven photocatalytic hydrogen evolution. Int J Hydrogen Energy 36(4):2794–2802CrossRefGoogle Scholar
  138. 138.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37Google Scholar
  139. 139.
    Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42(6):2294–2320CrossRefGoogle Scholar
  140. 140.
    Maeda K (2013) Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal 3:1486–1503CrossRefGoogle Scholar
  141. 141.
    Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278CrossRefGoogle Scholar
  142. 142.
    Radhakrishnan AN, Rao PP, Linsa KS, Deepa M, Koshy P (2011) Influence of disorder-to-order transition on lattice thermal expansion and oxide ion conductivity in (Ca(x)Gd(1−x))(2)(Zr(1−x)M(x))2O7 pyrochlore solid solutions. Dalton Trans 40(15):3839–3848CrossRefGoogle Scholar
  143. 143.
    Sasaki Y, Kato H, Kudo A (2013) [Co(bpy)3](3+/2+) and [Co(phen)3](3+/2+) electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J Am Chem Soc 135:5441–5449CrossRefGoogle Scholar
  144. 144.
    Sasaki Y, Nemoto H, Saito K, Kudo A (2009) Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J Phys Chem C 113Google Scholar
  145. 145.
    Fujihara K (1998) TO, M. Matsumura. Splitting of water by electrochemical combination of two photocatalytic reactions on particles. J Chem Soc, Faraday Trans 94:3705–3709CrossRefGoogle Scholar
  146. 146.
    Kato H, Hori M, Konta R, Shimodaira Y, Kudo A (2004) Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradia. Chem Lett 33:1348–1349Google Scholar
  147. 147.
    Abe R, Sayama K, Domen K, Arakawa H (2001) A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and IO3−/I shuttle redox mediator. Chem Phys Lett 344:339–344Google Scholar
  148. 148.
    Wang Q, Hisatomi T, Jia Q, Tokudome H, Zhong M, Wang C (2016) Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1. Nat Mater 15(6):611–615CrossRefGoogle Scholar
  149. 149.
    Iwase A, Ng YH, Ishiguro Y, Kudo A, Amal R (2011) Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J Am Chem Soc 133:11054–11057CrossRefGoogle Scholar
  150. 150.
    Sayama K, Yoshida R, Kusama H, Okabe K, Abe Y, Arakawa H (1997) Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+:Fe2+ redox system. Chem Phys Lett 277:387–391Google Scholar
  151. 151.
    Tennakone K, Tantrigoda R, Abeysinghe S, Punchihewa S, Fernando CA (1990) Water photolysis via reversible oxidation and reduction between MnO2 and MnO4 2−. J Photochem Photobiol, A-Chem 52:43–46Google Scholar
  152. 152.
    Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2001) Arakawa. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I shuttle redox mediator under visible light irradiation. Chem Commun 2416–2417Google Scholar
  153. 153.
    Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132:5858–5868Google Scholar
  154. 154.
    Yan J, Wu H, Chen H, Zhang Y, Zhang F, Liu SF (2016) Fabrication of TiO2/C3N4 heterostructure for enhanced photocatalytic Z-scheme overall water splitting. Appl Catal B-Environ 191:130–137Google Scholar
  155. 155.
    Jia Q, Iwase A, Kudo A (2014) BiVO4–Ru/SrTiO3:Rh composite Z-scheme photocatalyst for solar water splitting. Chem Sci 5:1513–1519Google Scholar
  156. 156.
    Wang Q, Hisatomi T, Suzuki Y, Pan Z, Seo J, Katayama M et al (2017) Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J Am Chem Soc 139(4):1675–1683CrossRefGoogle Scholar
  157. 157.
    Pan Z, Hisatomi T, Wang Q, Chen S, Iwase A, Nakabayashi M, Shibata N, Takata T, Katayama M, Minegishi T, Kudo A, Domen K (2016) Photoreduced graphene oxide as a conductive binder to improve the water splitting activity of photocatalyst sheets. Adv Funct Mater 26:7011–7019Google Scholar
  158. 158.
    Pan Z, Hisatomi T, Wang Q, Chen S, Iwase A, Nakabayashi M, Shibata N, Takata T, Katayama M, Minegishi T, Kudo A, Domen K (2016) Photocatalyst sheets composed of particulate LaMg1:3Ta2:3O2N and Mo-doped BiVO4 for Z-scheme water splitting under visible light. ACS Catal 6:7188–7196Google Scholar
  159. 159.
    Doscher H, Young JL, Geisz JF, Turner JA, Deutsch TG (2016) Solar-to-hydrogen efficiency: shining light on photoelectrochemical device performance. Energy Environ Sci 9(1):74–80CrossRefGoogle Scholar
  160. 160.
    Murphy AB, Barnes PRF, Randeniya LK, Plumb IC, Grey IE, Horne MD et al (2006) Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrogen Energy 31(14):1999–2017CrossRefGoogle Scholar
  161. 161.
    Harald M, Andreas I, Robert K, Willem Z, Heinz AO, Ewan DD (2005) Spectral mismatch in calibration of photovoltaic reference devices by global sunlight method. Meas Sci Technol 16(6):1250CrossRefGoogle Scholar
  162. 162.
    Kato H, Sasaki Y, Shirakura N, Kudo A (2013) Synthesis of highly active rhodium-doped SrTiO3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting. J Mater Chem A. 1(39):12327–12333CrossRefGoogle Scholar
  163. 163.
    Sasaki Y, Kato H, Kudo A (2013) [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J Am Chem Soc 135(14):5441–5449CrossRefGoogle Scholar
  164. 164.
    Wang Q, Hisatomi T, Ma SSK, Li Y, Domen K (2014) Core/shell structured La- and Rh-codoped SrTiO3 as a hydrogen evolution photocatalyst in Z-scheme overall water splitting under visible light irradiation. Chem Mater 26(14):4144–4150CrossRefGoogle Scholar
  165. 165.
    Wang Q, Hisatomi T, Suzuki Y, Pan Z, Seo J, Katayama M et al (2017) Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J Am Chem Soc 139(4):1675–1683CrossRefGoogle Scholar
  166. 166.
    Youn DH, Jang J-W, Kim JY, Jang JS, Choi SH, Lee JS (2014) Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing. Sci Rep 4:5492CrossRefGoogle Scholar
  167. 167.
    Li Y, Zhang L, Torres-Pardo A, González-Calbet JM, Ma Y, Oleynikov P et al (2013) Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat Commun 4:2566Google Scholar
  168. 168.
    Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mat Chem A 3(6):2485–2534CrossRefGoogle Scholar
  169. 169.
    Doscher H, Geisz JF, Deutsch TG, Turner JA (2014) Sunlight absorption in water—efficiency and design implications for photoelectrochemical devices. Energy Environ Sci 7(9):2951–2956CrossRefGoogle Scholar
  170. 170.
    Liao L, Zhang Q, Su Z, Zhao Z, Wang Y, Li Y et al (2014) Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat Nano. 9(1):69–73CrossRefGoogle Scholar
  171. 171.
    Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H et al (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347(6225):970–974CrossRefGoogle Scholar
  172. 172.
    Escobedo Salas S, Serrano Rosales B, de Lasa H (2013) Quantum yield with platinum modified TiO2 photocatalyst for hydrogen production. Appl Catal B: Environ 140–141:523–536CrossRefGoogle Scholar
  173. 173.
    Souza VS, Scholten JD, Weibel DE, Eberhardt D, Baptista DL, Teixeira SR et al (2016) Hybrid tantalum oxide nanoparticles from the hydrolysis of imidazolium tantalate ionic liquids: efficient catalysts for hydrogen generation from ethanol/water solutions. J Mater Chem A. 4(19):7469–7475CrossRefGoogle Scholar
  174. 174.
    Chen S, Shen S, Liu G, Qi Y, Zhang F, Li C (2015) Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew Chem Int Ed 54(10):3047–3051CrossRefGoogle Scholar
  175. 175.
    Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132(16):5858–5868CrossRefGoogle Scholar
  176. 176.
    Martin DJ, Qiu K, Shevlin SA, Handoko AD, Chen X, Guo Z et al (2014) Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew Chem Int Ed 53(35):9240–9245CrossRefGoogle Scholar
  177. 177.
    Li J, Wu N (2015) Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Technol 5(3):1360–1384CrossRefGoogle Scholar
  178. 178.
    May MM, Lewerenz H-J, Lackner D, Dimroth F, Hannappel T (2015) Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat Commun 6:8286CrossRefGoogle Scholar
  179. 179.
    Khan S, Santos MJL, Malfatti CF, Dupont J, Teixeira SR (2016) Pristine Ta3N5 nanotubes: trap-driven high external biasing perspective in semiconductor/electrolyte interfaces. Chem Eur J 22(51):18501–18511CrossRefGoogle Scholar
  180. 180.
    Chen XB, Shen SH, Guo LJ, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Renato V. Gonçalves
    • 1
    Email author
  • Heberton Wender
    • 2
  • Sherdil Khan
    • 3
  • Mauricio A. MeloJr.
    • 4
  1. 1.Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Instituto de FísicaUniversidade Federal do Mato Grosso do Sul (UFMS), Cidade UniversitáriaCampo GrandeBrazil
  3. 3.Instituto de FísicaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  4. 4.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations