Nanoenergy pp 301-328 | Cite as

New Ternary Intermetallics Based on Magnesium for Hydrogen Storage: The Fishing Approach

  • J.-L. BobetEmail author
  • E. Gaudin
  • S. Couillaud


Magnesium allows obtaining a good hydrogen storage capacity in terms of weight percentage but its use is limited by high stability of the hydride and slow kinetics. The kinetics can be improved by (i) mechanical grinding, cold rolling (or other severe plastic deformation) and (ii) addition of various elements (catalysts or activators).


Cold Rolling Ni Gd EPMA Analysis Hydrogen Sorption Good Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wagemans RWP, Van Lenthe JH, De Jongh PE, Van Dillen AJ, De Jong KP (2005) Hydrogen storage in magnesium clusters: quantum chemical study. J Am Chem Soc 127(47):16675–16680CrossRefGoogle Scholar
  2. 2.
    Vajo JJ (2011) Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides. Curr Opin Solid State Mater Sci 15:52–61CrossRefGoogle Scholar
  3. 3.
    Jeon K-J, Moon HR, Ruminski AM, Jiang B, Kisielowski C, Bardhan R, Jeffrey J (2011) Urban, air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat Mater 10:286–290CrossRefGoogle Scholar
  4. 4.
    Barcelo S, Rogers M, Grigoropoulos CP, Mao SS (2010) Hydrogen storage property of sandwiched magnesium hydride nanoparticle thin film. Int J Hydrog Energy 5:7232–7235CrossRefGoogle Scholar
  5. 5.
    Zhang X, Yang R, Yang J, Zhao W, Zheng J, Tian W, Li X (2011) Synthesis of magnesium nanoparticles with superior hydrogen storage properties by acetylene plasma metal reaction. Int J Hydrog Energy 36:4967–4975CrossRefGoogle Scholar
  6. 6.
    Adelhelm P, de Jongh PE (2011) The impact of carbon materials on the hydrogen storage properties of light metal hydrides. J Mater Chem 21:2417–2427CrossRefGoogle Scholar
  7. 7.
    Fichtner M (2009) Properties of nanoscale metal hydrides. Nanotechnology 20:204–209Google Scholar
  8. 8.
    Wang CX, Yang GW (2005) Thermodynamics of metastable phase nucleation at the nanoscale. Mater Sci Eng R Rep 49:157–202CrossRefGoogle Scholar
  9. 9.
    Reardon H, Hanlon JM, Hughes RW, Godula-Jopek A, Mandal TK, Gregory DH (2012) Emerging concepts in solid-state hydrogen storage: the role of nano-materials design. Energy Environ Sci 5:5951–5979CrossRefGoogle Scholar
  10. 10.
    Blanco AAG, de Oliveira JCA, Lopez R, Moreno-Pirajan JC, Giraldo L, Zgrablich G, Sapag K (2010) A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen. Colloids Surf A Physicochem Eng Aspects 357:74–83CrossRefGoogle Scholar
  11. 11.
    Kim KC, Dai B, Johnson JK, Sholl DS (2009) Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction. Nanotechnology 20:204–211Google Scholar
  12. 12.
    Hwang YK, Hong D-Y, Chang J-S, Jhung SH, Seo Y-K, Kim J, Vimont A, Daturi M, Serre C, Férey G (2008) Amine grafting on coordinatively unsaturated metal centers of mofs: consequences for catalysis and metal encapsulation. Angew Chem Int Ed 47:4144–4148CrossRefGoogle Scholar
  13. 13.
    Zlotea C, Latroche M (2012) Role of nanoconfinement on hydrogen sorption properties of metal nanoparticles hybrids. Colloids Surf A Physicochem Eng Aspects 439(December 20):117–130Google Scholar
  14. 14.
    Fierro V, Szczurek A, Zlotea C, Mareche JF, Izquierdo MT, Albiniak A, Latroche M, Furdin G, Celzard A (2010) Experimental evidence of an upper limit for hydrogen storage at 77 K on activated carbons. Carbon 48:1902–1911CrossRefGoogle Scholar
  15. 15.
    Loidl A, Knorr K, Müllner M, Buschow KHJ (1981) Magnetic properties of some rare earth magnesium compounds RMg2. J Appl Phys 52(3):1433–1438CrossRefGoogle Scholar
  16. 16.
    Buschow KHJ (1976) Magnetic properties of some rare earth magnesium compounds RMg3. J Less-Common Metals 44:301–306CrossRefGoogle Scholar
  17. 17.
    Darriet B, Pezat M, Hbika A, Hagenmuller P (1980) Application of magnesium rich rare-earth alloys to hydrogen storage. Int J Hydrog Energy 5:173–178CrossRefGoogle Scholar
  18. 18.
    Fornasini ML, Manfrinetti P (1986) GdMg5: a complex structure with a large cubic cell. Acta crystallographica C 42:138–141CrossRefGoogle Scholar
  19. 19.
    Evdokimenko VI, Kripyakevich PI (1940) Ueber die loeslickeit von lanthan in aluminium, magnesium und den homogenen legierungen des magnesiums und aluminiums. Zeitschrift für angewandte chemie 46(6):357–364Google Scholar
  20. 20.
    Janot R, Cuevas F, Latroche M, Percheron-Guégan A (2006) Influence of crystallinity on the structural and hydrogenation properties of Mg2X phases (X = Ni, Si, Ge, Sn). Intermetallics 14:163–169CrossRefGoogle Scholar
  21. 21.
    Buschow KHJ, Bouten PCP, Miedema AR (1982) Hydrides formed from intermetallic compounds of two transition metals: a special class of ternary alloys. Rep Prog Phys 45:937–1039CrossRefGoogle Scholar
  22. 22.
    Latroche M (2004) Structural and thermodynamic properties of metallic hydrides used for energy storage. J Phys Chem Solids 65:517–522CrossRefGoogle Scholar
  23. 23.
    Latroche M, Percheron-guégan A (2005) Hydrogen storage properties of metallic hydrides. Annales de chimie science des matériaux 30(5):471–482CrossRefGoogle Scholar
  24. 24.
    Govind, Suseelan Nair K, Mittal MC, Lal K, Mahanti RK, Sivaramakrishnan CS (2001) Development of rapidly solidified (RS) magnesium–aluminium–zinc alloy. Mater Sci Eng A 304–306:520–523Google Scholar
  25. 25.
    Pettersen G, Westengen H, Hoier R, Lohne O (1996) Microstructure of a pressure die cast magnesium—4wt.% aluminium alloy modified with rare earth additions. Mater Sci Eng A207:115–120CrossRefGoogle Scholar
  26. 26.
    Peng Q, Hou X, Wang L, Wu Y, Cao Z, Wang L (2009) Microstructure and mechanical properties of high performance Mg–Gd based alloys. Mater Des 30:292–296CrossRefGoogle Scholar
  27. 27.
    Inoue A (1998) Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog Mater Sci 43:365–520CrossRefGoogle Scholar
  28. 28.
    Petricek V, Dusek M, Palatinus L (2006). Jana2006. The crystallographic computing system. Institute of Physics, Praha, Czech RepublicGoogle Scholar
  29. 29.
    Couillaud S, Gaudin E, Bobet JL (2011) Rich magnesium ternary compound so-called LaCuMg8 derived from La2Mg17. Structure and hydrogenation behavior. Intermetallics 19:336–341CrossRefGoogle Scholar
  30. 30.
    Schulz R, Boily S, Huot J (1999) Apparatus for titration and circulation of gases and circulation of an absorbent or adsorbent substance. Patent 09/424,331Google Scholar
  31. 31.
    Gross K, Chartouni D, Leroy E, Zuttel A, Schlapbach L (1998) Mechanically milled Mg composites for hydrogen storage: the relationship between morphology and kinetics. J Alloy Compd 269:259–270CrossRefGoogle Scholar
  32. 32.
    Schubert K, Anderko K (1951) Kristallstruktur von NiMg2 und AuMg2. Naturwissenschaften 38(11):259CrossRefGoogle Scholar
  33. 33.
    Noreus D (1985) Structurally related phenomena in Mg2NiH4. Chemica Scripta 26A:103–106Google Scholar
  34. 34.
    Noreus D, Werner P-E (1982) Structural studies of hexagonal Mg2NiHx. Acta Chemical Scandinavica A36:847–851CrossRefGoogle Scholar
  35. 35.
    Darnaudery JP, Pezat M, Darriet B (1983) Influence de la substitution du cuivre au nickel dans Mg2Ni sur le stockage de l’hydrogène. Journal Less-Common Metals 92:199–205CrossRefGoogle Scholar
  36. 36.
    Zaluski L, Zaluska A, Ström-Olsen JO (1995) Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying. J Alloy Compd 217:245–249CrossRefGoogle Scholar
  37. 37.
    Abdellaoui M, Cracco D, Percheron-Guegan A (1998) Structural characterization and reversible hydrogen absorption properties of Mg Ni rich nanocomposite materials synthesized by mechanical alloying. J Alloy Compd 268:233–240CrossRefGoogle Scholar
  38. 38.
    Selvam P, Viswanathan B, Swamy CS, Srinivasan V (1988) Studies on the thermal characteristics of hydrides of Mg, Mg2Ni, Mg2Cu and Mg2Ni1-xMx (M = Fe Co, Cu, or Zn; 0 < x < 1) alloys. Int J Hydrog Energy 13(2):87–94CrossRefGoogle Scholar
  39. 39.
    Latka K, Kmiec R, Pacyna AW, Mishra R, Pöttgen R (2001) Magnetism and hyperfine interactions in Gd2Ni2Mg. Solid State Sci 3:545–558CrossRefGoogle Scholar
  40. 40.
    Pöttgen R, Fugmann A, Rodewald UC, Niepmann D (2000) Intermetallic cerium compounds with ordered U3Si2 type structure. Zeitschrift naturforschung 55b:155–161Google Scholar
  41. 41.
    Mishra R, Hoffmann RD, Pöttgen R (2001) New magnesium compounds RE2Cu2Mg (RE = Y, La-Nd, Sm, Gd-Tm, Lu) with Mo2FeB2 type structure. Zeitschrift naturforschung 56b:239–244Google Scholar
  42. 42.
    Hoffmann R-D, Fugmann A, Rodewald UC, Pöttgen R (2000) New intermetallic compounds Ln2Ni2Mg (Ln = Y, La-Nd, Sm, Gd-Tm) with Mo2FeB2 structure. Z Anorg Allg Chem 626:1733–1738CrossRefGoogle Scholar
  43. 43.
    Rieger W, Nowotny H, Benesovsky F (1964) Die Kristallstruktur von Mo2FeB2 – Kurze Mitteilung. Monatshefte fur chemie und verwandte teile anderer wissenschaften 95:1502–1503CrossRefGoogle Scholar
  44. 44.
    Couillaud S, Gaudin E, Andrieux J, Gorsse S, Gayot M, Bobet JL (2012) Study of the hydrogenation mechanism of LaCuMg8 ternary phase: the decomposition induces kinetics improvement. Int J Hydrogen Energy 37:11824–11834CrossRefGoogle Scholar
  45. 45.
    Rodewald UC, Chevalier B, Pöttgen R (2007) Rare earth-transition metal-magnesium compounds—an overview. J Solid State Chem 180:1720–1736CrossRefGoogle Scholar
  46. 46.
    Chotard JN, Filinchuk Y, Revaz B, Yvon K (2006) Isolated [Ni2H7]7- and [Ni4H12]12- ions in La2MgNi2H8. Angewandte chemie international edition 45:7770–7773Google Scholar
  47. 47.
    Chevalier B, Krolak AA, Bobet J-L, Gaudin E, Weill F, Hermes W, Pöttgen R (2008) On the strongly correlated electron hydride Ce2Ni2MgH7.7. Inorg Chem 47(22):10419–10424CrossRefGoogle Scholar
  48. 48.
    Renaudin G, Guénée L, Yvon K (2003) LaMgNiH7, a novel quaternary metal hydride containing tetrahedral [NiH4]4- complexes and hydride anions. J Alloy Compd 350:145–150CrossRefGoogle Scholar
  49. 49.
    Kadir K, Sakai T, Uehara I (1997) Synthesis and structure determination of a new series of hydrogen storage alloys; RMg2Ni9 (R = La, Ce, Pr, Nd, Sm and Gd) built from MgNi2 Laves type layers alternating with AB5 layers. J Al Compds 257:115–121CrossRefGoogle Scholar
  50. 50.
    Kadir K, Sakai T, Uehara I (2000) Structural investigation and hydrogen storage capacity of LaMg2Ni9 and (La0.65Ca0.35) (Mg1.32Ca0.68)Ni9 of the AB2C9 type structure. J Al Compds 302:112–117Google Scholar
  51. 51.
    Kadir K, Kuriyama N, Sakai T, Uehara I, Eriksson L (1999) Structural investigation and hydrogen capacity of CaMg2Ni9: a new phase in the AB2C9 system isostructural with LaMg2Ni9. J Al Compds 284:145–154CrossRefGoogle Scholar
  52. 52.
    Geibel C, Klinger U, Weiden M, Buschinger B, Steglich F (1997) Magnetic properties of new Ce-T-Mg compounds (T = Ni, Pd). Phys B 237–238:202–204CrossRefGoogle Scholar
  53. 53.
    Guénée L, Favre-Nicolin V, Yvon K (2003) Synthesis, crystal structure and hydrogenation properties of the ternary compounds LaNi4Mg and NdNi4Mg. J Alloy Compd 348:129–137CrossRefGoogle Scholar
  54. 54.
    Bobet J-L, Lesportes P, Roquefere J-G, Chevalier B, Asano K, Sakaki K, Akiba E (2007) A preliminary study of some “pseudo-AB2” compounds: RENi4Mg with RE = La, Ce and Gd. Structural and hydrogen sorption properties. Int J Hydrog Energy 32:2422–2428CrossRefGoogle Scholar
  55. 55.
    Aono1 K, Orimo S, Fujii H (2000) Structural and hydriding properties of MgYNi4: a new intermetallic compound with C15b-type Laves phase structure. J Alloy Compd 309:L1–L4Google Scholar
  56. 56.
    Kadir K, Noreus D, Yamashita I (2002) Structural determination of AMgNi4 (where A = Ca, La, Ce, Pr, Nd and Y) in the AuBe5 type structure. J Alloy Compd 345:140–143CrossRefGoogle Scholar
  57. 57.
    Osamura K, Murakami Y (1978) Crystal-structures of CuSnMg and Cu4SnMg ternary compounds. J Less-Common Metals 60:311–313CrossRefGoogle Scholar
  58. 58.
    Stan C, Andronescu E, Asano K, Sakaki K, Bobet J-L (2008) In situ X-ray diffraction under H2 of the pseudo-AB2 compounds: YNi3.5Al0.5Mg. Int J Hydrog Energy 33:2053–2058CrossRefGoogle Scholar
  59. 59.
    Stan C, Andronescu E, Predoi D, Bobet J-L (2008) Structural and hydrogen absorption/desorption properties of YNi4−xAlxMg compounds (with 0 ≤ x≤1.5). J Alloy Compd 461:228–234CrossRefGoogle Scholar
  60. 60.
    Stan C, Asano K, Sakaki K, Akiba E, Couillaud S, Bobet J-L (2009) In situ XRD for pseudo Laves phases hydrides highlighting the remained cubic structure. Int J Hydrog Energy 34:3038–3043CrossRefGoogle Scholar
  61. 61.
    Luo ZP, Zhang SQ (2000) High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy. J Mater Sci Lett 19:813–815CrossRefGoogle Scholar
  62. 62.
    Park ES, Chang HJ, Kim DH (2007) Mg-rich Mg–Ni–Gd ternary bulk metallic glasses with high compressive specific strength and ductility. J Mater Res 22(2):334–338CrossRefGoogle Scholar
  63. 63.
    Solokha P, De Negri S, Pavlyuk V, Saccone A, Marciniak B (2007) Crystallochemistry of the novel two-layer RECuMg4 (RE = La, Tb) ternary compounds. J Solid State Chem 180:3066–3075CrossRefGoogle Scholar
  64. 64.
    Teresiak A, Gebert A, Savyak M, Uhlemann M, Mickel Ch, Mattern N (2005) In situ high temperature XRD studies of the thermal behaviour of the rapidly quenched Mg77Ni18Y5 alloy under hydrogen. J Alloy Compd 398:156–164CrossRefGoogle Scholar
  65. 65.
    Kalinichenka S, Röntzsch L, Baehtz C, Kieback B (2010) Hydrogen desorption kinetics of melt-spun and hydrogenated Mg90Ni10 and Mg80Ni10Y10 using in situ synchrotron. X-ray diffraction and thermogravimetry. J Alloy Compd 496(1–2):608–613CrossRefGoogle Scholar
  66. 66.
    Gebert A, Khorkounov B, Wolff U, Mickel Ch, Uhlemann M, Schultz L (2006) Stability of rapidly quenched and hydrogenated Mg–Ni–Y and Mg–Cu–Y alloys in extreme alkaline medium. J Alloy Compd 419:319–327CrossRefGoogle Scholar
  67. 67.
    Hagihara K, Yokotani N, Umakoshi Y (2010) Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure. Intermetallics 18(2):267–276CrossRefGoogle Scholar
  68. 68.
    De Negri S, Giovannini M, Saccone A (2007) Constitutional properties of the La–Cu–Mg system at 400 °C. J Alloy Compd 427:134–141CrossRefGoogle Scholar
  69. 69.
    Opainich IM, Pavlyuk VV, Bodak OI (1996) Crystal structure of a Ce2Fe2Mg15 compound. Crystallogr Rep 41(5):813–816Google Scholar
  70. 70.
    Florio JV, Baenziger NC, Rundle RE (1956) Compounds of thorium with transition metals. II. Systems with iron, cobalt and nickel. Acta Crystallogr A 9:367–372CrossRefGoogle Scholar
  71. 71.
    Givord D, Givord F, Lemaire R, James WJ, Shah JS (1972) Evidence of disordered substitutions in the “Th2Ni17-type” structure. Exact determination of the Th-Ni, Y-Ni and Er- Co compounds. J Less-Common Metals 29:389–396Google Scholar
  72. 72.
    Johnson Q, Smith GS (1967) Refinement of the Th2Ni17-Type structure: CeMg10.3. Acta Crystallogr A 23:327–329CrossRefGoogle Scholar
  73. 73.
    Isnard O, Miraglia S, Soubeyroux JL, Fruchart D, Stergiou A (1990) Neutron diffraction study of the structural and magnetic properties of the R2Fe17Hx(Dx) ternary compounds (R = Ce, Nd and Ho). J Less-Common Metals 162:273–284CrossRefGoogle Scholar
  74. 74.
    Tereshina I, Nikitin S, Suski W, Stepien-Damm J, Iwasieczko W, Drulis H, Skokov K (2005) Structural and magnetic properties of Dy2Fe17Hx (x = 0 and 3) single crystals. J Alloy Compd 404–406:172–175CrossRefGoogle Scholar
  75. 75.
    Block G, Jeitschko W (1987) Tb2Mn17C3-x with filled Th2Ni17-type structure and some structural and magnetic properties of related compounds. J Solid State Chem 70:271–280CrossRefGoogle Scholar
  76. 76.
    Fischer P, Halg W, Schlapbach L, Yvon K (1978) Neutron and X-ray diffraction investigation of deuterium storage. J Less-Common Metals 60(1):1–9CrossRefGoogle Scholar
  77. 77.
    Zachariasen WH, Holley CE, Stamper Jnr JF (1963) Neutron diffraction study of magnesium deuteride. Acta Crystallogr A 16:352–353CrossRefGoogle Scholar
  78. 78.
    Yajima S, Kayano H, Toma H (1977) Hydrogen sorption in La2Mg17. J Less-Common Metals 55:139–141CrossRefGoogle Scholar
  79. 79.
    Slattery DK (1995) The hydriding-dehydriding characteristics of La2Mg17. Int J Hydrog Energy 20(12):971–973CrossRefGoogle Scholar
  80. 80.
    Khrussanova M, Pezat M, Darriet B, Hagenmuller P (1982) Le stockage de l’hydrogène par les alliages La2Mg17 et La2Mg16Ni. J Less-Common Metals 86:153–160CrossRefGoogle Scholar
  81. 81.
    Khrussanova M, Terzieva M, Peshev P (1986) On the hydriding kinetics of the alloys La2Mg17 and La2−xCaxMg17. Int J Hydrog Energy 1(5):331–334CrossRefGoogle Scholar
  82. 82.
    Sun D, Gingl F, Nakamura Y, Enoki H, Bououdina M, Akiba E (2002) In situ X-Ray diffraction study of hydrogen-induced phase decomposition in LaMg12 and La2Mg17. J Alloy Compd 333:103–108CrossRefGoogle Scholar
  83. 83.
    Wang L, Wang X, Chen L, Gao L, Xiao X, Chen C (2006) Effects of surface modification on the electrode behavior of ball-milled La2 Mg17 + 200 wt% Ni composite in alkaline solution. J Alloy Compd 420:306–311CrossRefGoogle Scholar
  84. 84.
    Gao XP, Lu ZW, Wang Y, Wu F, Song DY, Shen PW (2004) Electrochemical hydrogen storage of nanocrystalline La2Mg17 alloy ball-milled with Ni Powders. Electrochem Solid-State Lett 7(5):A102–A104CrossRefGoogle Scholar
  85. 85.
    Reilly JJ, Wiswall RH (1967) The reaction of hydrogen with alloys of magnesium and copper. Inorg Chem 6(12):2220–2223CrossRefGoogle Scholar
  86. 86.
    Huot J, Liang G, Boily S, Van Neste A, Schulz R (1999) Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J Alloy Compd 293–295:495–500CrossRefGoogle Scholar
  87. 87.
    Palumbo M, Torres FJ, Ares JR, Pisani C, Fernandez JF, Baricco M (2007) Thermodynimic and ab initio investigation of the Al-H-Mg system. Comput Coupling Phase Diagrams Thermochem 31:457–467CrossRefGoogle Scholar
  88. 88.
    Gorsse S, Shiflet GJ (2002) A thermodynamic assessment of the Cu-Mg-Ni ternary system. Comput Coupling Phase Diagrams Thermochem 26(1):63–83CrossRefGoogle Scholar
  89. 89.
    Andreasen A, Sørensen MB, Burkarl R, Møller B, Molenbroek AM, Pedersen AS, Vegge T, Jensen JN (2006) Dehydrogenation kinetics of air-exposed MgH2/Mg2Cu and MgH2/MgCu2 studied with in situ X-ray powder diffraction. Appl Phys A 82:515–521CrossRefGoogle Scholar
  90. 90.
    Shao H, Wang Y, Xu H, Li X (2005) Preparation and hydrogen storage properties of nanostructured Mg2Cu alloy. J Solid State Chem 178:2211–2217CrossRefGoogle Scholar
  91. 91.
    Karty A, Grunzweig-Genossar J, Rudman PS (1979) Hydriding and dehydriding kinetics of Mg in a Mg/Mg Cu eutectic alloy: pressure sweep method. J Appl Phys 50(11):7200–7210CrossRefGoogle Scholar
  92. 92.
    Au M, Wu J, Wang Q (1995) The hydrogen storage properties and the mechanism of the hydriding process of some multi-component magnesium- base hydrogen storage. Int J Hydrogen Energy 20(2):141–150CrossRefGoogle Scholar
  93. 93.
    De Bruijn TJW, De Jong WA, Van den berg PJ (1981) Kinetic parameters in Avrami-Erofeev type reactions from isothermal and non-isothermal experiments. Thermochimica Acta 45:315–325Google Scholar
  94. 94.
    Barkhordarian G, Klassen T, Bormann R (2004) Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J Alloy Compd 364:242–246CrossRefGoogle Scholar
  95. 95.
    Bobet JL, Kandavel M, Ramaprabhu S (2006) Effects of ball milling condition and additives on the hydrogen sorption properties of Mg + 5wt% Cr2O3 mixtures. J Mater Res 21(7):1747–1752CrossRefGoogle Scholar
  96. 96.
    Wu CZ, Wang P, Yao X, Liu C, Chen DM, Lu GQ, Cheng HM (2006) Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling. J Alloy Compd 420:278–282CrossRefGoogle Scholar
  97. 97.
    Liang G, Huot J, Boily S, Van Neste A, Schulz R (1999) Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J Alloy Compd 292:247–252CrossRefGoogle Scholar
  98. 98.
    Zhang LT, Ito K, Vasudevan VK, Yamaguchi M (2002) Effects of cold-rolling on the hydrogen absorption/desorption behaviour of Ti–22Al–27Nb alloys. Mater Sci Eng A329–331:362–366CrossRefGoogle Scholar
  99. 99.
    Zhang LT, Ito K, Vasudevan VK, Yamaguchi M (2001) Hydrogen absorption and desorption in a B2 single-phase Ti-22Al-27Nb alloy before and after deformation. Acta Materalia 49:751–758CrossRefGoogle Scholar
  100. 100.
    Couillaud S, Enoki H, Amira S, Bobet JL, Akiba E, Huot J (2009) Effect of ball milling and cold rolling on hydrogen storage properties of nanocrystalline TiV1.6Mn0.4 alloy. J Alloy Compd 484:154–158CrossRefGoogle Scholar
  101. 101.
    Dufour J, Huot J (2007) Rapid activation, enhanced hydrogen sorption kinetics and air resistance in laminated Mg–Pd 2.5at.%. J Alloy Compd 439:L5–L7CrossRefGoogle Scholar
  102. 102.
    Zaluska A, Zaluski L, Ström-Olsen JO (1999) Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni. J Alloy Compd 289:197–206CrossRefGoogle Scholar
  103. 103.
    Li Z, Liu L, Jiang L, Wang S (2007) Characterization of Mg-20wt% Ni-Y hydrogen storage composite prepared by reactive mechanical alloying. Int J Hydrog Energy 32:1869–1874CrossRefGoogle Scholar
  104. 104.
    Swanson HE, Tatge E (1959) structure of Mg. J Res Nat Bur Stand 46:318–327CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.CNRS, ICMCBUniversité de BordeauxPessacFrance

Personalised recommendations