Hybrid Solar Cells: Effects of the Incorporation of Inorganic Nanoparticles into Bulk Heterojunction Organic Solar Cells

  • Jilian Nei de FreitasEmail author
  • João Paulo de Carvalho Alves
  • Ana Flávia NogueiraEmail author


Organic solar cells are among the most promising devices for low-cost solar energy conversion. The classical device consists of a bulk heterojunction of a conjugated polymer/fullerene network. Many research groups have focused on the replacement of the fullerene derivative with other materials, especially inorganic nanoparticles, due to their easily tunable properties, such as size/shape, absorption/emission, and charge carrier transport. In this chapter, the progress achieved on the incorporation of inorganic semiconductor nanoparticles and metal nanoparticles into organic solar cells is highlighted. The role of such nanoparticles in the improvement of current, voltage, and efficiency is discussed and a critical view is presented, particularly considering their effects on the morphology of the systems.


Hybrid Solar Cells (HSC) Charge transportCharge Transport CdSe Nanoparticles Hybrid Films holeHole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge FAPESP (fellowship 2009/15428-0), CNPq (458413/2014-3) and Capes for financial support, LME/LNNano/CNPEM for the technical support during HR-TEM and AFM work, and Prof. N. Serdar Sariciftci, Prof. Mônica A. Cotta, João H. Clerice and Giovanni Conturbia for scientific discussions.


  1. 1.
    Fthenakis V, Alsema E (2006) Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004—early 2005 status. Prog Photovolt 14:275–280CrossRefGoogle Scholar
  2. 2.
    Zhao J, Wang A, Altermatt P, Green MA (1995) 24 percent efficient silicon solar-sells with double-layer antireflection coatings and reduced resistance loss. Appl Phys Lett 66:3636–3638CrossRefGoogle Scholar
  3. 3.
    Zhao J, Wang A, Green MA, Ferrazza F (1998) 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett 73:1991–1993CrossRefGoogle Scholar
  4. 4.
    Shockley W, Queisser HQ (1961) Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 32:510–519CrossRefGoogle Scholar
  5. 5.
    Knapp K, Jester T (2001) Empirical investigation of the energy payback time for photovoltaic modules. Sol Energy 71:165–172CrossRefGoogle Scholar
  6. 6.
    Goetzberger A, Luther J, Willeke G (2002) Solar cells: past, present, future. Sol Energy Mater Sol Cells 74:1–11CrossRefGoogle Scholar
  7. 7.
    Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 5(5293):1–8Google Scholar
  8. 8.
    He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russel TP, Cao Y (2015) Single-junction polymer solar cells with high efficiency and photovoltage. Nat Photon 9:174–179CrossRefGoogle Scholar
  9. 9.
    Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39:2354–2371CrossRefGoogle Scholar
  10. 10.
    Liz-Marzán LM (2004) Nanometals: formation and color. Mater Today 7:26–31CrossRefGoogle Scholar
  11. 11.
    Scholes GD, Rumbles G (2006) Excitons in nanoscale systems. Nat Mater 5:683–696CrossRefGoogle Scholar
  12. 12.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRefGoogle Scholar
  13. 13.
    Manna L, Sher EC, Alivisatos AP (2002) Shape control of colloidal semiconductor nanocrystals. J Clust Sci 13:521–532CrossRefGoogle Scholar
  14. 14.
    Cozzoli PD, Pellegrino T, Manna L (2006) Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 35:1195–1208CrossRefGoogle Scholar
  15. 15.
    Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem 391:2469–2495CrossRefGoogle Scholar
  16. 16.
    Moriarty P (2001) Nanostructured materials. Rep Prog Phys 64:297–381CrossRefGoogle Scholar
  17. 17.
    Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 22:1781–1804CrossRefGoogle Scholar
  18. 18.
    Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825CrossRefGoogle Scholar
  19. 19.
    Henzie J, Lee J, Lee MH, Hasan W, Odom TW (2009) Nanofabrication of plasmonic structures. Annu Rev Phys Chem 60:147–165CrossRefGoogle Scholar
  20. 20.
    Eustis S, El-Sayed MA (2006) Why gold nanopartilces are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217CrossRefGoogle Scholar
  21. 21.
    Noguez C, Garzon IL (2009) Optically active metal nanoparticles. Chem Soc Rev 38:757–771CrossRefGoogle Scholar
  22. 22.
    Zhang JZ, Noguez C (2008) Plasmonic optical properties and applications of metal nanostructures. Plasmonics 3:127–150CrossRefGoogle Scholar
  23. 23.
    Arici E, Meissner D, Schaffler F, Sariciftci NS (2003) Core/shell nanomaterials in photovoltaics. Int J Photoenergy 5:199–208CrossRefGoogle Scholar
  24. 24.
    Saunders BR, Turner ML (2008) Nanoparticle-polymer photovoltaic cells. Adv Colloid Interface Sci 138:1–23CrossRefGoogle Scholar
  25. 25.
    Skompska M (2010) Hybrid conjugated polymer/semiconductor photovoltaic cells. Synth Met 160:1–15CrossRefGoogle Scholar
  26. 26.
    Tang CW (1986) 2-layer organic photovoltaic cell. Appl Phys Lett 48:183–185CrossRefGoogle Scholar
  27. 27.
    Meskers SCJ, Huebner M, Oestreich M, Baessler H (2001) Dispersive relaxation dynamics of photoexcitations in a polyfluorene film involving energy transfer: experiment and Monte Carlo simulations. J Phys Chem B 105:9139–9149CrossRefGoogle Scholar
  28. 28.
    Mayer AC, Scully SR, Hardin BE, Rowell MW, McGehee MD (2007) Polymer-based solar cells. Mater Today 10:28–33CrossRefGoogle Scholar
  29. 29.
    Pope M, Swenberg CE (1999) Electronic Processes in Organic Crystals and Polymers, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  30. 30.
    Miranda PB, Moses D, Heeger AJ (2001) Ultrafast photogeneration of charged polarons in conjugated polymers. Phys Rev B 64:081201-1–081201-4Google Scholar
  31. 31.
    Harrison NT, Hayes GR, Phillips RT, Friend RH (1996) Singlet intrachain exciton generation and decay in poly(p-phenylenevinylene). Phys Rev Lett 77:1881–1884CrossRefGoogle Scholar
  32. 32.
    Yu G, Zhang C, Heeger AJ (1994) Dual function semiconducting polymer devices—light-emitting and photodetecting diodes. Appl Phys Lett 64:1540–1542CrossRefGoogle Scholar
  33. 33.
    Gregg BA (2003) Excitonic solar cells. J Phys Chem B 107:4688–4698CrossRefGoogle Scholar
  34. 34.
    Savenije TJ, Warman JM, Goossens A (1998) Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer. Chem Phys Lett 287:148–153CrossRefGoogle Scholar
  35. 35.
    Nelson J (2002) Organic photovoltaic films. Curr Opin Solid State Mater Sci 6:87–95CrossRefGoogle Scholar
  36. 36.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells—enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–1791CrossRefGoogle Scholar
  37. 37.
    Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498–500CrossRefGoogle Scholar
  38. 38.
    Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron-transfer from a conducting polymer to Buckminsterfullerene. Science 258:1474–1476CrossRefGoogle Scholar
  39. 39.
    Brabec CJ, Zerza G, Cerulo G, De Silvestri S, Luzatti S, Hummelen JC, Sariciftci NS (2001) Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem Phys Lett 340:232–236CrossRefGoogle Scholar
  40. 40.
    Nogueira AF, Montanari I, Nelson J, Durrant JR, Winder C, Sariciftci NS, Brabec CJ (2003) Charge recombination in conjugated polymer/fullerene blended films studied by transient absorption spectroscopy. J Phys Chem B 107:1567–1573CrossRefGoogle Scholar
  41. 41.
    Kim JS, Granström M, Friend RH, Johansson N, Salaneck WR, Daik R, Feast WJ, Cacialli F (1998) Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes: the relation between the anode physical, chemical, and morphological properties and the device performance. J Appl Phys 84:6859–6870CrossRefGoogle Scholar
  42. 42.
    Koch N, Kahn A, Ghijsen J, Prieaux JJ, Schwartz S, Johnson RL, Elschner A (2003) Conjugated organic molecules on metal versus polymer electrodes: demonstration of a key energy level alignment mechanism. Appl Phys Lett 82:70–72CrossRefGoogle Scholar
  43. 43.
    Brabec CJ, Shaheen SE, Winder C, Sariciftci NS, Denk P (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80:1288–1290CrossRefGoogle Scholar
  44. 44.
    Malliaras GG, Salem JR, Brock PJ, Scott JC (1998) Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes. J Appl Phys 84:1583–1587CrossRefGoogle Scholar
  45. 45.
    Markvart T, Castafier L (2005) Principles of solar cell operation. In: Markvart T, Castafier L (eds) Solar cells: materials, manufacture and operation. Elsevier, AmsterdamGoogle Scholar
  46. 46.
    Meissner D, Ronstalski J (2001) Photovoltaics of interconnected networks. Synth Met 121:1551–1552CrossRefGoogle Scholar
  47. 47.
    Gregg BA, Hanna MC (2003) Comparing organic to inorganic photovoltaic cells: theory, experiment, and simulation. J Appl Phys 93:3605–3614CrossRefGoogle Scholar
  48. 48.
    Hoppe H, Glatzel T, Niggemann M, Schwinger W, Schaeffler F, Hinsch A, Lux-Steiner MC, Sariciftci NS (2006) Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells. Thin Solid Films 511:587–592CrossRefGoogle Scholar
  49. 49.
    Hoppe H, Niggemann M, Winder C, Kraut J, Hiesgen R, Hinsch A, Meissner D, Sariciftci NS (2004) Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv Funct Mater 14:1005–1011CrossRefGoogle Scholar
  50. 50.
    Rispens MT, Meetsma A, Rittberger R, Brabec CJ, Sariciftci NS, Hummelen JC (2003) Influence of the solvent on the crystal structure of PCBM and the efficiency of MDMO-PPV:PCBM “plastic” solar cells. Chem Commun 17:2116–2118CrossRefGoogle Scholar
  51. 51.
    Gebeyehu D, Brabec CJ, Padinger F, Fromherz T, Hummelen JC, Badt D, Schindler H, Sariciftci NS (2001) The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes. Synth Met 118:1–9CrossRefGoogle Scholar
  52. 52.
    Yang X, Alexeev A, Michels MAJ, Loos J (2005) Effect of spatial confinement on the morphology evolution of thin poly(p-phenylenevinylene)/methanofullerene composite films. Macromolecules 38:4289–4295CrossRefGoogle Scholar
  53. 53.
    Choulis SA, Nelson J, Kim Y, Poplavskyy D, Kreouzis T, Durrant JR, Bradley D (2003) Investigation of transport properties in polymer/fullerene blends using time-of-flight photocurrent measurements. Appl Phys Lett 83:3812–3814CrossRefGoogle Scholar
  54. 54.
    Snaith HJ, Arias AC, Morteani AC, Silva C, Friend RH (2002) Charge generation kinetics and transport mechanisms in blended polyfluorene photovoltaic devices. Nano Lett 2:1353–1357CrossRefGoogle Scholar
  55. 55.
    Brabec CJ, Cravino A, Meissner D, Saricftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC (2001) Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater 11:374–380CrossRefGoogle Scholar
  56. 56.
    Brabec CJ (2004) Organic photovoltaics: technology and market. Sol Energy Mater Sol Cells 83:273–292CrossRefGoogle Scholar
  57. 57.
    Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Rispens MT, Sanchez L, Hummelen JC, Fromherz T (2002) The influence of materials work function on the open circuit voltage of plastic solar cells. Thin Solid Films 403:368–372CrossRefGoogle Scholar
  58. 58.
    Sharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18:789–794CrossRefGoogle Scholar
  59. 59.
    Gadisa A, Svensson M, Andersson M, Inganäs O (2004) Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Appl Phys Lett 84:1609–1611CrossRefGoogle Scholar
  60. 60.
    Yamanari T, Taima T, Sakai J, Saito K (2009) Origin of the open-circuit voltage of organic thin-film solar cells based on conjugated polymers. Sol Energy Mater Sol Cells 93:759–761CrossRefGoogle Scholar
  61. 61.
    Liu J, Shi Y, Yang Y (2001) Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices. Adv Funct Mater 11:420–424CrossRefGoogle Scholar
  62. 62.
    Mihailetchi VD, Blom PWM, Hummelen JC, Rispens MT (2003) Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells. J Appl Phys 94:6849–6854CrossRefGoogle Scholar
  63. 63.
    Ramsdale CM, Barker JA, Arias AC, MacKenzie JD, Friend RH (2002) The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices. J Appl Phys 92:4266–4270CrossRefGoogle Scholar
  64. 64.
    Eo YS, Rhee HW, Chin BD, Yu J-W (2009) Influence of metal cathode for organic photovoltaic device performance. Synth Met 159:1910–1913CrossRefGoogle Scholar
  65. 65.
    Alem S, Gao J, Wantz G (2009) Photovoltaic response of symmetric sandwich polymer cells with identical electrodes. J Appl Phys 106:044505-1–044505-5CrossRefGoogle Scholar
  66. 66.
    Frohne H, Shaheen S, Brabec CJ, Müeller D, Sariciftci NS, Meerholz K (2002) Influence of the anodic work function on the performance of organic solar cells. Chem Phys Chem 3:795–799CrossRefGoogle Scholar
  67. 67.
    Shaheen SE, Brabec CJ, Saricftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841–843CrossRefGoogle Scholar
  68. 68.
    Alem S, de Bettignies R, Nunzi J-M, Cariou M (2004) Efficient polymer-based interpenetrated network photovoltaic cells. Appl Phys Lett 84:2178–2180CrossRefGoogle Scholar
  69. 69.
    Schilinsky P, Waldauf C, Brabec CJ (2002) Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Appl Phys Lett 81:3885–3887CrossRefGoogle Scholar
  70. 70.
    Padinger F, Rittberger R, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13:85–88CrossRefGoogle Scholar
  71. 71.
    Dennler G, Mozer AJ, Juska G, Pivrikas A, Osterbacka R, Fucnsbauer A, Sariciftci NS (2006) Charge carrier mobility and lifetime versus composition of conjugated polymer/fullerene bulkheterojunction solar cells. Org Electron 7:229–234CrossRefGoogle Scholar
  72. 72.
    Kline RJ, Mcgehee MD, Kadnikova EN, Liu J, Fréchet JM (2003) Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv Mater 15:1519–1522CrossRefGoogle Scholar
  73. 73.
    Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945CrossRefGoogle Scholar
  74. 74.
    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868CrossRefGoogle Scholar
  75. 75.
    Yang X, Loos J, Veenstra SC, Verhees WJH, Wienk MM, Kroon JM, Michaels MAJ, Janssen RAJ (2005) Nanoscale morphology of high-performance polymer solar cells. Nano Lett 5:579–583CrossRefGoogle Scholar
  76. 76.
    Erb T, Zhokkavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec CJ (2005) Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv Funct Mater 15:1193–1196CrossRefGoogle Scholar
  77. 77.
    Zhokhavets U, Erb T, Hoppe H, Gobsch G, Sariciftci NS (2006) Effect of annealing of poly(3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties. Thin Solid Films 496:679–682CrossRefGoogle Scholar
  78. 78.
    Reyes-Reyes M, Kim K, Dewald J, López-Sandoval R, Avadhanula A, Curran S, Carroll DL (2005) Meso-structure formation for enhanced organic photovoltaic cells. Org Lett 7:5749–5752CrossRefGoogle Scholar
  79. 79.
    Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of interpenetrating network morphology. Adv Funct Mater 15:1617–1622CrossRefGoogle Scholar
  80. 80.
    Li G, Shrotriya V, Yao Y, Yang Y (2005) Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J Appl Phys 98:043704-1–043704-5Google Scholar
  81. 81.
    Clarke TM, Ballantyne AM, Nelson J, Bradley DDC, Durrant JR (2008) Free energy control of charge photogeneration in polythiophene/fullerene solar cells: the influence of thermal annealing on P3HT/PCBM blends. Adv Funct Mater 18:4029–4035CrossRefGoogle Scholar
  82. 82.
    Moon JS, Takacs CJ, Cho S, Coffin RC, Kim H, Bazan GC, Heeger AJ (2010) Effect of processing additive on the nanomorphology of a bulk heterojunction material. Nano Lett 10:4005–4008CrossRefGoogle Scholar
  83. 83.
    Privikas A, Stadler P, Neugebauer H, Sariciftci NS (2008) Substituting the postproduction treatment for bulk-heterojunction solar cells using chemical additives. Org Electron 9:775–782CrossRefGoogle Scholar
  84. 84.
    Peet J, Heeger AJ, Bazan GC (2009) “Plastic” solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc Chem Res 42:1700–1708CrossRefGoogle Scholar
  85. 85.
    Ameri T, Dennler G, Lungenschmied C, Brabec CJ (2009) Organic tandem solar cells: a review. Energy Environ Sci 2:347–363CrossRefGoogle Scholar
  86. 86.
    Helgesen M, Sondergaard R, Krebs FC (2010) Advanced materials and processes for polymer solar cell devices. J Mater Chem 20:36–60CrossRefGoogle Scholar
  87. 87.
    Liang Y, Xu Z, Xia J, Tsai S-T, Wu Y, Li G, Ray C, Yu L (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135–E138CrossRefGoogle Scholar
  88. 88.
    Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ, Dante M, Heeger AJ (2007) Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–225CrossRefGoogle Scholar
  89. 89.
    Wong WY, Wang XZ, He Z, Djurišić AB, Yip CT, Cheung KY, Wang H, Mak CSK, Chan WK (2007) On the efficiency of polymer solar cells. Nat Mater 6:704–705CrossRefGoogle Scholar
  90. 90.
    He Z, Zhong C, Huang X, Wong W-Y, Wu H, Chen L, Su S, Cao Y (2011) Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater 23:4636–4643CrossRefGoogle Scholar
  91. 91.
    He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon 6:591–595Google Scholar
  92. 92.
    Zhang S, Ye L, Zhao W, Liu D, Yao H, Hou J (2014) Side chain selection for designing highly efficient photovoltaic polymers with 2D-conjugated structure. Macromolecules 47:4653–4659CrossRefGoogle Scholar
  93. 93.
    Nam S, Seo J, Woo S, Kim WH, Bradley DDC, Kim Y (2015) Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers. Nat Commun 6(8929):1–9Google Scholar
  94. 94.
    Nozik AJ (2010) Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett 10:2735–2741CrossRefGoogle Scholar
  95. 95.
    Nozik AJ (2008) Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett 457:3–11CrossRefGoogle Scholar
  96. 96.
    Nozik AJ (2002) Quantum dot solar cells. Phys E 14:115–120CrossRefGoogle Scholar
  97. 97.
    Nozik AJ, Beard MC, Luther JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110:6873–6890CrossRefGoogle Scholar
  98. 98.
    Rabani E, Baer R (2010) Theory of multiexciton generation in semiconductor nanocrystals. Chem Phys Lett 496:227–235CrossRefGoogle Scholar
  99. 99.
    Beard MC, Midgett AG, Hanna MC, Luther JM, Hughes BK, Nozik AJ (2010) Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Lett 10:3019–3027CrossRefGoogle Scholar
  100. 100.
    Kang MS, Sahu A, Norris DJ, Frisbie D (2010) Size-dependent electrical transport in CdSe nanocrystal thin films. Nano Lett 10:3727–3732CrossRefGoogle Scholar
  101. 101.
    Arici E, Sariciftci NS, Meissner D (2003) Hybrid solar cells based on nanoparticles of CuInS2 in organic matrices. Adv Funct Mater 13:165–171CrossRefGoogle Scholar
  102. 102.
    Arici E, Hoppe H, Schaffler F, Meissner D, Malik MA, Sariciftci NS (2004) Morphology effects in nanocrystalline CuInSe2-conjugated polymer hybrid systems. Appl Phys A—Mater Sci Process 79:59–64CrossRefGoogle Scholar
  103. 103.
    Arici E, Hoppe H, Schaffler F, Meissner D, Malik MA, Sariciftci NS (2004) Hybrid solar cells based on inorganic nanoclusters and conjugated polymers. Thin Solid Films 451:612–618CrossRefGoogle Scholar
  104. 104.
    Yue W, Han S, Peng R, Shen W, Geng H, Wu F, Tao S, Wang M (2010) CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells. J Mater Chem 20:7570–7578CrossRefGoogle Scholar
  105. 105.
    Maier E, Rath T, Haas W, Werzer O, Saf R, Hofer F, Meissner D, Volobujeva O, Bereznev S, Mellikov E, Amenitsch H, Resel R, Trimmel G (2011) CuInS2-poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: preparation by na in situ formation route, performance and stability issues. Sol Energy Mater Sol Cells 95:1354–1361CrossRefGoogle Scholar
  106. 106.
    Rath T, Edler M, Haas W, Fischereder A, Moscher S, Schenk A, Trattnig R, Sezen M, Mauthner G, Pein A, Meischler D, Bartl K, Saf R, Bansal N, Haque SA, Hofer F, List EJW, Trimmel G (2011) A direct route towards polymer/copper indium sulfide nanocomposite solar cells. Adv Energy Mater 1:1046–1050CrossRefGoogle Scholar
  107. 107.
    Radychev N, Scheunemann D, Kruszynska M, Frevert K, Miranti R, Kolny-Olesiak J, Borchert H, Parisi J (2012) Investigation of the morphology and electrical characteristics of hybrid blends based on poly(2-hexylthiophene) and colloidal CuInS2 nanocrystals of different shapes. Org Electron 13:3154–3164CrossRefGoogle Scholar
  108. 108.
    Arar M, Gruber M, Edler M, Haas W, Hofer F, Bansal N, Reynolds LX, Haque SA, Zojer K, Trimmel G, Rath T (2013) Influence of morphology and polymer:nanoparticle ratio on device performance of hybrid solar cells—an approach in experiment and simulation. Nanotechnology 24:484005CrossRefGoogle Scholar
  109. 109.
    Arar M, Pein A, Haas W, Hofer F, Norrman K, Krebs FC, Rath T, Trimmel G (2012) Comprehensive investigation of silver nanoparticle/aluminum electrodes for copper indium sulfide/polymer hybrid solar cells. J Phys Chem C 116:19191–19196CrossRefGoogle Scholar
  110. 110.
    Yue W, Zhang G, Wang S, Sun W, Lan M, Nie G (2014) Influence of crystal phase for CuInS2 on device performance of polymer-CuInS2/oxide nanoarrays solar cells. Mater Sci Semicond Process 25:337–343CrossRefGoogle Scholar
  111. 111.
    Yang Y, Zhong H, Bai H, Zou B, Li Y, Scholes GD (2012) Transition from photoconductivity to photovoltaic effect in P3HT/CuInSe2 composites. J Phys Chem C 116:7280–7286CrossRefGoogle Scholar
  112. 112.
    Lin Y-Y, Wang D-Y, Yen H-C, Chen H-L, Chen C-C, Chen C-M, Tang C-Y, Chen C-W (2009) Extended red light harvesting in a poly(3-hexylthiophene)/iron disulfide nanocrystal hybrid solar cell. Nanotechnology 20:405207CrossRefGoogle Scholar
  113. 113.
    Steinhagen C, Harvey TB, Stolle CJ, Harris J, Korgel BA (2012) Pyrite nanocrystal solar cells: promising, or fool’s gold? J Phys Chem Lett 3:2352–2356CrossRefGoogle Scholar
  114. 114.
    Layek A, Middya S, Ray PP (2013) Increase in open circuit voltage by the incorporation of band gap engineered FeS2 nanoparticle within MEHPPV solar cell. J Mater Sci Mater Electron 24:3749–3755CrossRefGoogle Scholar
  115. 115.
    Bansal N, O’Mahony FTF, Lutz T, Haque SA (2013) Solution processed polymer-inorganic semiconductor solar cells employing Sb2S3 as a light harvesting and electron transporting material. Adv Energy Mater 3:986–990CrossRefGoogle Scholar
  116. 116.
    O’Mahony FTF, Cappel UB, Tokmoldin N, Lutz T, Lindblad R, Rensmo H (2013) Low-temperature solution processing of mesoporous metal-sulfide semiconductors as light-harvesting photoanodes. Angew Chem Int Ed 52:12047–12051CrossRefGoogle Scholar
  117. 117.
    Saha SK, Pal AJ (2015) Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells. J Appl Phys 118:014503CrossRefGoogle Scholar
  118. 118.
    Wang Z, Qu S, Zeng X, Liu J, Zhang C, Tan F, Jin L, Wang Z (2009) The application of SnS nanoparticles to bulk heterojunction solar cells. J Alloys Compd 482:203–207CrossRefGoogle Scholar
  119. 119.
    Du Pasquier A, Mastrogiovanni DDT, Klein LA, Wang T, Garfunkel E (2007) Photoinduced charge transfer between poly(3-hexylthiophene) and germanium nanowires. Appl Phys Lett 91:183501-1–183501-3CrossRefGoogle Scholar
  120. 120.
    Novotny CJ, Yu ET, Yu PKL (2008) InP nanowire/polymer hybrid photodiode. Nano Lett 8:775–779CrossRefGoogle Scholar
  121. 121.
    Liu C-Y, Holman ZC, Kortshagen UR (2009) Hybrid solar cells from P3HT and silicon nanocrystals. Nano Lett 9:449–452CrossRefGoogle Scholar
  122. 122.
    Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427CrossRefGoogle Scholar
  123. 123.
    Huynh WU, Dittmer JJ, Libby WC, Whiting GL, Alivisatos AP (2003) Controlling the morphology of nanocrystal-polymer composites for solar cells. Adv Funct Mater 13:73–79CrossRefGoogle Scholar
  124. 124.
    Sun BQ, Greenham NC (2006) Improved effciency of photovoltaics based on CdSe nanorods and poly(3-hexylthiophene) nanofibers. Phys Chem Chem Phys 8:3557–3560CrossRefGoogle Scholar
  125. 125.
    Hindson JC, Saghi Z, Hernandez-Garrido J-C, Midgley PA, Greenham NC (2011) Morphological study of nanoparticle-polymer solar cells using high-angle annular dark-field electron tomography. Nano Lett 11:904–909CrossRefGoogle Scholar
  126. 126.
    Zhou Y, Li YC, Zhong HZ, Hou JH, Ding YQ, Yang CH, Li YF (2006) Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1-x nanocrystals. Nanotechnology 17:4041–4047CrossRefGoogle Scholar
  127. 127.
    Sun BQ, Marx E, Greenham NC (2003) Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers. Nano Lett 3:961–963CrossRefGoogle Scholar
  128. 128.
    Gur I, Fromer NA, Chen C-P, Kanaras AG, Alivisatos AP (2007) Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Lett 7:409–414CrossRefGoogle Scholar
  129. 129.
    Grancini G, Biasiucci M, Mastria R, Scotognella F, Tassone F, Polli D, Gigli G, Lanzani G (2012) Dynamic microscopy study of ultrafast charge transfer in a hybrid P3HT/hyperbranched CdSe nanoparticle blend for photovoltaics. J Phys Chem Lett 3:517–523CrossRefGoogle Scholar
  130. 130.
    Lee K-S, Kim I, Gullapalli S, Wong MS, Jabbour GE (2011) Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods. Appl Phys Lett 99:223515CrossRefGoogle Scholar
  131. 131.
    Dayal S, Reese MO, Ferguson AJ, Ginley DS, Rumbles G, Kopidakis N (2010) The effect of nanoparticle shape on the photocarrier dynamics and photovoltaic device performance of poly(3-hexylthiophene):CdSe nanoparticle bulk heterojunction solar cells. Adv Funct Mater 20:2629–2635CrossRefGoogle Scholar
  132. 132.
    Sun BQ, Snaith HJ, Dhoot AS, Westenhoff S, Greenham NC (2005) Vertically segregated hybrid blends for photovoltaic devices with improved efficiency. J Appl Phys 97:014914-1–014914-6Google Scholar
  133. 133.
    Dayal S, Kopidakis N, Olson DC, Ginley DS, Rumbles G (2010) Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. Nano Lett 10:239–242CrossRefGoogle Scholar
  134. 134.
    Kuo C-Y, Su M-S, Chen G-Y, Ku C-S, Lee H-Y, Wei K-H (2011) Annealing treatment improves the morphology and performance of photovoltaic devices prepared from thieno[3,4-c]pyrrole-4,6-dione-based donor/acceptor conjugated polymers and CdSe nanostructures. Energy Environ Sci 4:2316–2322CrossRefGoogle Scholar
  135. 135.
    Zhou R, Zheng Y, Qian L, Yang Y, Holloway PH, Xue J (2012) Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability. Nanoscale 4:3507–3514CrossRefGoogle Scholar
  136. 136.
    Qiao F (2013) Improved performance of photovoltaic devices based on poly(3-hexylthiophene) nanofibers and CdSe quantum dots through ligand exchange and annealing treatment. Solid-State Electron 82:25–28CrossRefGoogle Scholar
  137. 137.
    Peng Y, Song G, Hu X, He G, Chen Z, Xu X, Hu J (2013) In situ synthesis of P3HT-capped CdSe superstructures and their application in solar cells. Nanoscale Res Lett 8:106CrossRefGoogle Scholar
  138. 138.
    Celik D, Krueger M, Veit C, Schleiermacher HF, Zimmermann B, Allard S, Dumsch I, Scherf U, Rauscher F, Niyamakom P (2012) Performance enhancement of CdSe nanorod-polymer based hybrid solar cells utilizing a novel combination of post-synthetic nanoparticle surface treatments. Sol Energy Mater Sol Cells 98:433–440CrossRefGoogle Scholar
  139. 139.
    Wu Y, Zhang G (2010) Performance enhancement of hybrid solar cells through chemical vapor annealing. Nano Lett 10:1628–1631CrossRefGoogle Scholar
  140. 140.
    Choi S-H, Song HJ, Park IK, Yum J-H, Kim S-S, Lee SH, Sung Y-E (2006) Synthesis of size-controlled CdSe quantum dots and characterization of CdSe-conjugated polymer blends for hybrid solar cells. J Photochem Photobiol A 179:135–141CrossRefGoogle Scholar
  141. 141.
    Tang A-W, Teng F, Jui H, Gao Y-H, Hou Y-B, Liang C-J, Wang Y-S (2007) Investigation on photoconductive properties of MEH-PPV/CdSe-nanocrystal nanocomposites. Mater Lett 61:2178–2181CrossRefGoogle Scholar
  142. 142.
    Han LL, Qin DH, Jiang X, Liu YS, Wang L, Chen JW, Cao Y (2006) Synthesis of high quality zinc-blende CdSe nanocrystals and their application in hybrid solar cells. Nanotechnology 17:4736–4742CrossRefGoogle Scholar
  143. 143.
    Jiang X, Chen F, Qiu W, Yan Q, Nan Y, Xu H, Yang L, Chen H (2010) Effects of molecular interface modification in CdS/polymer hybrid bulk heterojunction solar cells. Sol Energy Mater Sol Cells 94:2223–2229CrossRefGoogle Scholar
  144. 144.
    Chen F, Qiu W, Chen X, Yang L, Jiang X, Wang M, Chen H (2011) Large-scale fabrication of CdS nanorod arrays on transparent conductive substrates from aqueous solutions. Sol Energy 85:2122–2129CrossRefGoogle Scholar
  145. 145.
    Mohamed NBH, Haouari M, Ebdelli R, Zaaboud Z, Habchi MM, Hassen F, Maaref H, Ouada HB (2015) Role of surface modification of CdS nanoparticles on the performance of hybrid photovoltaic devices based on p-phenylenevinylene derivative. Phys E 69:145–152CrossRefGoogle Scholar
  146. 146.
    Zhou YF, Riehle FS, Yuan Y, Schleiermacher H-F, Niggemann M, Urban GA, Krüger M (2010) Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene). Appl Phys Lett 96:013304-1–013304-3Google Scholar
  147. 147.
    Zhou Y, Eck M, Veit C, Zimmermann B, Rauscher F, Niyamakom P, Yilmaz S, Dumsch I, Allard S, Scherf U, Kruger M (2011) Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT. Sol Energy Mater Sol Cells 95:1232–1237CrossRefGoogle Scholar
  148. 148.
    Zhou Y, Eck M, Men C, Rauscher F, Niyamakom P, Yilmaz S, Dumsch I, Allard S, Scherf U, Krüger M (2011) Efficient polymer nanocrystal hybrid solar cells by improved nanocrystal composition. Sol Energy Mater Sol Cells 95:3227–3232CrossRefGoogle Scholar
  149. 149.
    Fu W-F, Shi Y, Qiu WM, Wang L, Nan YX, Shi M-M, Li H-Y, Chen H-Z (2012) High efficiency hybrid solar cells using post-deposition ligand exchange by monothiols. Phys Chem Chem Phys 14:12094–12098CrossRefGoogle Scholar
  150. 150.
    Fu W-F, Shi Y, Wang L, Shi M-M, Li H-Y, Chen H-Z (2013) A geen, low-cost, and highly effective strategy to enhance the performance of hybrid solar cells: post-deposition ligand exchange by acetic acid. Sol Energy Mater Sol Cells 117:329–335CrossRefGoogle Scholar
  151. 151.
    Ren S, Chang L-Y, Lim S-K, Zhao J, Smith M, Zhao N, Bulovic V, Bawendi M, Gradecak S (2011) Inorganic-organic hybrid solar cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett 11:3998–4002CrossRefGoogle Scholar
  152. 152.
    Dixit SK, Madan S, Madhwal D, Kumar J, Sihgh I, Bhatia CS, Bhatnagar PK, Mathur PC (2012) Bulk heterojunction formation with induced concentration gradient from a bilayer structure of P3HT:CdSe/ZnS quantum dots using inter-diffusion process for developing high efficiency solar cell. Org Electron 13:710–714CrossRefGoogle Scholar
  153. 153.
    de Freitas JN, Pivrikas A, Nowacki BF, Akcelrud LC, Sariciftci NS, Nogueira AF (2010) Investigation of new PPV-type polymeric materials containing fluorene and thiophene units and their application in organic solar cells. Synth Met 160:1654–1661CrossRefGoogle Scholar
  154. 154.
    de Freitas JN, Grova IR, Akcelrud LC, Arici E, Sariciftci NS, Nogueira AF (2010) The effects of CdSe incorporation into bulk heterojunction solar cells. J Mater Chem 20:4845–4853CrossRefGoogle Scholar
  155. 155.
    Huynh WU, Dittmer JJ, Teclemariam N, Milliron DJ, Alivisatos AP, Barnham KWJ (2003) Charge transport in hybrid nanorod-polymer composite photovoltaic cells. Phys Rev B 67:115326-1–115326-12CrossRefGoogle Scholar
  156. 156.
    Lin Y-Y, Chen C-W, Chang J, Lin TY, Liu IS, Su W-F (2006) Exciton dissociation and migration in enhanced order conjugated polymer/nanoparticle hybrid materials. Nanotechnology 17:1260–1263CrossRefGoogle Scholar
  157. 157.
    Wang P, Abrusci A, Wong HMP, Svensson M, Andersson MR, Greenham NC (2006) Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles. Nano Lett 6:1789–1793CrossRefGoogle Scholar
  158. 158.
    Ginger DS, Greenham NC (1999) Charge separation in conjugated-polymer/nanocrystal blends. Synth Met 101:425–428CrossRefGoogle Scholar
  159. 159.
    Ginger DS, Greenham NC (1999) Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals. Phys Rev B 59:10622–10629CrossRefGoogle Scholar
  160. 160.
    Kucur E, Riegler J, Urban G, Nann T (2004) Charge transfer efficiency in hybrid bulk heterojunction composites. J Chem Phys 121:1074–1079CrossRefGoogle Scholar
  161. 161.
    Greenham NC, Peng XG, Alivisatos AP (1996) Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys Rev B 54:17628–17637CrossRefGoogle Scholar
  162. 162.
    Ginger DS, Greenham NC (2000) Charge injection and transport in films of CdSe nanocrystals. J Appl Phys 87:1361–1368CrossRefGoogle Scholar
  163. 163.
    Baker DR, Kamat PV (2010) Tuning the emission of CdSe quantum dots by controlled trap enhancement. Langmuir 13:11272–11276CrossRefGoogle Scholar
  164. 164.
    Talforn E, Moysidou E, Abellon RD, Savenije TJ, Goossens A, Houtepen AJ, Siebbeles LDA (2010) Highly photoconductive CdSe quantum-dot films: influence of capping molecules and film preparation procedure. J Phys Chem C 114:3441–3447CrossRefGoogle Scholar
  165. 165.
    Lokteva I, Radychev N, Witt F, Borchert H, Parisi J, Kolny-Olesiak J (2010) Surface treatment of CdSe nanoparticles for application in hybrid solar cells: the effect of multiple ligand exchange with pyridine. J Phys Chem C 114:12784–12791CrossRefGoogle Scholar
  166. 166.
    Dasgupta U, Bera A, Pal AJ (2015) pn-Junction nanorods in a polymer matrix: a paradigm shift from conventional hybrid bulk-heterojunction solar cells. Sol Energy Mater Sol Cells 143:319–325CrossRefGoogle Scholar
  167. 167.
    Cappel UB, Dowland SA, Reynolds LX, Dimitrov S, Haque SA (2013) Charge generation dynamics in CdS:P3HT blends for hybrid solar cells. J Phys Chem Lett 4:4253–4257CrossRefGoogle Scholar
  168. 168.
    Wood K, Garnett O, Tokmoldin N, Tsoi WC, Haque SA, Kim J-S (2014) In situ formation of organic-inorganic hybrid nanostructures for photovoltaic applications. Faraday Discuss 174:267–279Google Scholar
  169. 169.
    Wengeler L, Schmitt M, Peters K, Scharfer P, Schabel W (2013) Comparison of large scale coating techniques for organic and hybrid films in polymer based solar cells. Chem Eng Process 68:38–44CrossRefGoogle Scholar
  170. 170.
    Kumar N, Dutta V (2014) Fabrication of polymer/cadmium sulfide hybrid solar cells [P3HT:CdS and PCPDTBT:CdS] by spray deposition. J Colloid Interface Sci 434:181–187CrossRefGoogle Scholar
  171. 171.
    Liu JS, Tanaka T, Sivula K, Alivisatos AP, Fréchet JMJ (2004) Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. J Am Chem Soc 126:6550–6551CrossRefGoogle Scholar
  172. 172.
    Albero J, Martınez-Ferrero E, Ajuria J, Waldauf C, Paciosc R, Palomares E (2009) Photo-induced eléctron recombination dynamics in CdSe/P3HT hybrid heterojunctions. Phys Chem Chem Phys 11:9644–9647CrossRefGoogle Scholar
  173. 173.
    Truong NTN, Kim WK, Park C (2011) Effect of CdSe/P3HT composition on electrical and structural properties of bulk heterojunction solar cell active layer. Sol Energy Mater Sol Cells 95:167–170CrossRefGoogle Scholar
  174. 174.
    Dowland SA, Reynolds LX, McLachlan A, Cappel UB, Haque SA (2013) Photoinduced electron and hole transfer in CdS:P3HT nanocomposite films: effect of nanomorphology on charge separation yield and solar cell performance. J Mater Chem A 1:13896–13901CrossRefGoogle Scholar
  175. 175.
    Querner C, Reiss P, Bleuse J, Pron A (2004) Chelating ligands for nanocrystals’ surface functionalization. J Am Chem Soc 126:11574–11582CrossRefGoogle Scholar
  176. 176.
    Milliron DJ, Gur L, Alivisatos AP (2005) Hybrid organic: nanocrystal solar cells. MRS Bull 30:41–44CrossRefGoogle Scholar
  177. 177.
    Advincula RC (2006) Hybrid organic-inorganic nanomaterials based on polythiophene dendronized nanoparticles. Dalton Trans 23:2778–2784CrossRefGoogle Scholar
  178. 178.
    Sih BC, Wolf M (2007) CdSe nanorods functionalized with thiol-anchored oligothiophenes. J Phys Chem C 111:17184–17192CrossRefGoogle Scholar
  179. 179.
    Aldakov D, Querner C, Kervella Y, Jousselme B, Demadrille R, Rossitto E, Reiss P, Pron A (2008) Oligothiophene-functionalized CdSe nanocrystals: preparation and electrochemical properties. Microchim Acta 160:335–344CrossRefGoogle Scholar
  180. 180.
    Skaff H, Sill K, Emrick T (2004) Quantum dots tailored with poly(para-phenylene vinylene). J Am Chem Soc 126:11322–11352CrossRefGoogle Scholar
  181. 181.
    Odoi MY, Hammer NI, Sill K, Emrick T, Barnes MD (2006) Observation of enhanced energy transfer in individual quantum dot-oligophenylene vinylene nanostructures. J Am Chem Soc 128:3506–3507CrossRefGoogle Scholar
  182. 182.
    Pokrop R, Pamula K, Deja-Drogomirecka S, Zagorska M, Reiss P, Louarn G, Chandezon F, Pron A (2010) Molecular hybrids of CdSe semiconductor nanocrystals with terthiophene carboxylic acid or its polymeric analogue. Mater Chem Phys 123:756–760CrossRefGoogle Scholar
  183. 183.
    Shallcross RC, D’Ambruoso GD, Pyun J, Armstrong NR (2010) Photoelectrochemical processes in polymer-tethered CdSe nanocrystals. J Am Chem Soc 132:2622–2632CrossRefGoogle Scholar
  184. 184.
    Zhang QL, Russel TP, Emrick T (2007) Synthesis and characterization of CdSe nanorods functionalized with regioregular poly(3-hexylthiophene). Chem Mater 19:3712–3716CrossRefGoogle Scholar
  185. 185.
    Xu J, Wang J, Mitchell M, Mukherjee P, Jeffries-EL M, Petrich JW, Lin Z (2007) Organic-inorganic nanocomposites via directly grafting conjugated polymers onto quantum dots. J Am Chem Soc 129:12828–12833CrossRefGoogle Scholar
  186. 186.
    Wang T-L, Yang C-H, Shieh Y-T, Yeh A-C, Juan L-W, Zeng HC (2010) Synthesis of new nanocrystal-polymer nanocomposite as the electron acceptor in polymer bulk jeterojunction solar cells. Eur Polym J 46:634–642CrossRefGoogle Scholar
  187. 187.
    Robel J, Kuno M, Kamat PV (2007) Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J Am Chem Soc 129:4136–4137CrossRefGoogle Scholar
  188. 188.
    Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J Am Chem Soc 130:4007–4015CrossRefGoogle Scholar
  189. 189.
    Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753CrossRefGoogle Scholar
  190. 190.
    Baker DR, Kamat PV (2009) Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv Funct Mater 19:805–811CrossRefGoogle Scholar
  191. 191.
    Bang JH, Kamat PV (2010) Solar cells by design: photoelectrochemistry of TiO2 nanorod arrays decorated with CdSe. Adv Funct Mater 20:1970–1976CrossRefGoogle Scholar
  192. 192.
    Sambur JB, Riha SC, Choi D, Parkinson BA (2010) Influence of surface chemistry on the binding and electronic coupling of CdSe quantum dots to single crystal TiO2 surfaces. Langmuir 26:4839–4847CrossRefGoogle Scholar
  193. 193.
    Shin K, Seok SI, Im SH, Park JH (2010) CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells. Chem Commun 46:2385–2387CrossRefGoogle Scholar
  194. 194.
    Mora-Seró I, Likodimos V, Gimenez S, Martínez-Ferrero E, Albero J, Palomares E, Kontos AG, Falaras P, Bisquert J (2010) Fast regeneration of CdSe quantum dots by Ru dye in sensitized TiO2 electrodes. J Phys Chem C 114:6755–6761CrossRefGoogle Scholar
  195. 195.
    Shalom M, Albero J, Tachan Z, Martinez-Ferrero E, Zaban A, Palomares E (2010) Quantum dot-bilayer-sensitized solar cells: breakng the limits imposed by the low absorbance of dye monolayers. J Phys Chem Lett 1:1134–1138CrossRefGoogle Scholar
  196. 196.
    Gao X-F, Sun W-T, Ai G, Peng L-M (2004) Photoelectric performance of TiO2 nanotube array photoelectrodes cosensitized with CdS/CdSe quantum dots. Appl Phys Lett 96:153104-1–153104-3Google Scholar
  197. 197.
    Huang S, Zhang Q, Huang X, Guo X, Deng M, Li D, Luo Y, Shen Q, Toyoda T, Meng Q (2010) Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays. Nanotechnology 21:375201-1–375201-7Google Scholar
  198. 198.
    Talgorn E, Abellon RD, Kooyman PJ, Piris J, Savenije TJ, Goossens A, Houtepen AJ, Siebbeles LDA (2010) Supercrystals of CdSe quantum dots with high charge mobility and efficient electron transfer to TiO2. ACS Nano 4:1723–1731CrossRefGoogle Scholar
  199. 199.
    Kniprath R, Rabe JP, McLeskey JT Jr, Wang D, Kirstein S (2009) Hybrid photovoltaic cells with II–VI quantum dot sensitizers fabricated by layer-by-layer deposition of water-soluble components. Thin Solid Films 518:295–298CrossRefGoogle Scholar
  200. 200.
    Hamada M, Nakanishi S, Itoh T, Ishikawa M, Biju V (2010) Blinking suppression in CdSeCdSe/ZnS single quantum dots by TiO2 nanoparticles. ACS Nano 4:4445–4454CrossRefGoogle Scholar
  201. 201.
    Liu Z, Miyauchi M, Uemura Y, Cui Y, Hara K, Zhao Z, Sunahara K, Furube A (2010) Enhancing the performance of quantum dots sensitized solar cell by SiO2 surface coating. Appl Phys Lett 96:233107-1–233107-3Google Scholar
  202. 202.
    Luo L, Lv G, Li B, Hu X, Jin L, Wang J, Tang Y (2010) Formation of aligned ZnO nanotube arrays by chemical etching and coupling with CdSe for photovoltaic application. Thin Solid Films 518:5146–5152CrossRefGoogle Scholar
  203. 203.
    Timp BA, Zhu X-Y (2010) Electronic energy alignment at the PbSe quantum dots/ZnO (1010) interface. Surf Sci 604:1335–1341CrossRefGoogle Scholar
  204. 204.
    Huang J, Huang Z, Yang Y, Zhu H, Lian T (2010) Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. J Am Chem Soc 132:4858–4864CrossRefGoogle Scholar
  205. 205.
    Guchhait A, Rath AK, Pal AJ (2009) Hybrid core-shell nanoparticles: photoinduced electron-transfer for charge separation and solar cell applications. Chem Mater 21:5292–5299CrossRefGoogle Scholar
  206. 206.
    Narayanan SS, Sinhá SS, Verma PK, Pal SK (2008) Ultrafast energy transfer from 3-mercaptopropionic acid capped CdSe/ZnS QDs to dye-labelled DNA. Chem Phys Lett 463:160–165CrossRefGoogle Scholar
  207. 207.
    Deepa M, Gakhar R, Joshi AG, Singh BP, Srivastava AK (2010) Enhanced photoelectrochemistry and interactions in cadmium selenide-functionalized multiwalled carbon nanotube composite films. Electrochim Acta 55:6731–6742CrossRefGoogle Scholar
  208. 208.
    Zhang L, Jia Y, Wang S, Li Z, Ji C, Wei J, Zhu H, Wang K, Wu D, Shi W, Fang Y, Cao A (2010) Carbon nanotube and CdSe nanobelt Schottky junction solar cells. Nano Lett 10:3583–3589CrossRefGoogle Scholar
  209. 209.
    Schulz-Drost C, Sgobba V, Gerhardsm C, Leubner S, Calderon RMK, Ruland A, Guldi DM (2010) Innovative inorganic-organic nanohybrid materials: coupling quantum dots to carbon nanotubes. Angew Chem Int Ed 49:6425–6429CrossRefGoogle Scholar
  210. 210.
    Chen Z, Berciaud S, Nukolls C, Heinz TF, Brus LE (2010) Energy transfer from individual semiconductor nanocrystals to graphene. ACS Nano 4:2964–2968CrossRefGoogle Scholar
  211. 211.
    Biebersdorf A, Dietmuller R, Susha AS, Rogach AL, Poznyak SK, Talapin DV, Weller H, Klar TA, Feldmann J (2006) Semiconductor nanocrystals photosensitize C-60 crystals. Nano Lett 6:1559–1563CrossRefGoogle Scholar
  212. 212.
    Chen H-Y, Lo MKF, Yang G, Monbouquette HG, Yang Y (2008) Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene. Nat Nanotechnol 3:543–547CrossRefGoogle Scholar
  213. 213.
    de Freitas JN, Nogueira AF (2010) Hybrid nanostructured solar cells based on the incorporation of inorganic nanoparticles in polymer-fullerene mixtures. Proc SPIE Int Soc Opt Eng 7772:77721K. doi: 10.1117/12.862510 Google Scholar
  214. 214.
    Xue B, Vaughan B, Poh C-H, Burke KB, Thomsen L, Stapleton A, Zhou X, Bryant GW, Belcher W, Dastoor PC (2010) Vertical stratification and interfacial structure in P3HT:PCBM organic solar cells. J Phys Chem C 114:15797–15805CrossRefGoogle Scholar
  215. 215.
    Huang Y-C, Liao Y-C, Li S-S, Wu M-C, Chen C-W, Su W-F (2009) Study of the effect of annealing process on the performance of P3HT/PCBM photovoltaic devices using scanning-probe microscopy. Sol Energy Mater Sol Cells 93:888–892CrossRefGoogle Scholar
  216. 216.
    Dante M, Peet J, Nguyen T-Q (2008) Nanoscale charge transport and internal structure of bulk heterojunction conjugated polymer/fullerene solar cells by scanning probe microscopy. J Phys Chem C 112:7241–7249CrossRefGoogle Scholar
  217. 217.
    Zhao Y, Xie Z, Qu Y, Geng Y, Wang L (2007) Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk heterojunction photovoltaic cells. Appl Phys Lett 90:043504-1–043504-3Google Scholar
  218. 218.
    Watts B, Belcher WJ, Thomsen L, Ade H, Dastoor PC (2009) A quantitative study of PCBM diffusion during annealing of P3HT:PCBM blend films. Macromolecules 42:8392–8397CrossRefGoogle Scholar
  219. 219.
    Alves JPD, de Freitas JN, Atvars TDZ, Nogueira AF (2013) Photophysical and photovoltaic properties of a polymer-fullerene system containing CdSe nanoparticles. Synth Met 164:69–77CrossRefGoogle Scholar
  220. 220.
    Cao F, Wang H, Xia Z, Dai X, Cong S, Dong C, Sun B, Lou Y, Sun Y, Zhao J, Zou G (2015) An alternative route towards monodisperse CdS quantum dots for hybrid solar cells. Mater Chem Phys 149–150:124–128CrossRefGoogle Scholar
  221. 221.
    Sharma |R, Bhalerao S, Gupta D (2016) Effect of incorporation of CdS NPs on performance of PTB7: PCBM organic solar cells. Org Electron 33:274–280CrossRefGoogle Scholar
  222. 222.
    Leventis HC, King SP, Sudlow A, Hill MS, Molloy KC, Haque SA (2010) Nanostructured hybrid polymer-inorganic solar cell active layers formed by controllable in situ growth of semiconducting sulfide networks. Nano Lett 10:1253–1258CrossRefGoogle Scholar
  223. 223.
    Xi DJ, Zhang H, Furst S, Chen B, Pei Q (2008) Electrochemical synthesis and photovoltaic property of cadmium sulfide-polybithiophene interdigitated nanohybrid thin films. J Phys Chem C 112:19765–19769CrossRefGoogle Scholar
  224. 224.
    Aldakov D, Jiu T, Zagorska M, de Bettignies R, Jouneau P-H, Pron A, Chandezon F (2010) Hybrid nanocomposites of CdSe nanocrystals distributed in complexing thiophene-based copolymers. Phys Chem Chem Phys 12:7497–7505CrossRefGoogle Scholar
  225. 225.
    Wise F (2000) Lead salt quantum dots: the limit of strong quantum confinement. Acc Chem Res 33:773–780CrossRefGoogle Scholar
  226. 226.
    Ma W, Swisher SL, Ewers T, Engel J, Ferry VE, Atwater HA, Alivisatos AP (2011) Photovoltaic performance of ultrasmall PbSe quantum dots. ACS Nano 5:8140–8147CrossRefGoogle Scholar
  227. 227.
    Scholes GD, Rumbles G (2006) Exciton in nanoscales systems. ACS Nano 5:683–693Google Scholar
  228. 228.
    Morrels I, Lambert K, Smeets D, De Muynck D, Nollet T, Martins JC, Vanhaecke F, Vantomme A, Delerue C, Allan G, Hens Z (2009) Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3:3023–3030CrossRefGoogle Scholar
  229. 229.
    Hines MA, Scholes D (2003) Colloidal PbS nanocrystal with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv Mater 15:1844–1849CrossRefGoogle Scholar
  230. 230.
    Watt AAR, Blake D, Warner JH, Thomsen EA, Tavenner AL, Rubinsztein-Dunlop H (2005) Lead sulphide nanocrystal: conducting polymer solar cells. J Phys D Appl Phys 38:2006–2012CrossRefGoogle Scholar
  231. 231.
    Cui D, Xu J, Zhu T, Paradee G, Ashok S, Gerhold M (2006) Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic solar cells. Appl Phys Lett 88:183111-1–183111-3CrossRefGoogle Scholar
  232. 232.
    Jiang X, Schaller RD, Lee SB, Pietryga JM, Klimov VI, Zakhidov AA (2007) PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron. J Mater Res 22:2204–2210CrossRefGoogle Scholar
  233. 233.
    Thapa R, Choudhury KR, Kim WJ, Sahoo Y, Cartwright AN, Prasad PN (2007) Polymeric nanocomposite infrared photovoltaics enhanced by pentacene. Appl Phys Lett 90:252112-1–252112-3CrossRefGoogle Scholar
  234. 234.
    McDonald SA, Konstantatos G, Zhang S, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 4:138–142CrossRefGoogle Scholar
  235. 235.
    Maria A, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Solution-processed infrared photovoltaic devices with >10% momochomatic internal quantum efficiency. Appl Phys Lett 87:213112–213113CrossRefGoogle Scholar
  236. 236.
    Seo J, Kim SJ, Kim WJ, Singh R, Samoc M, Cartweight AN, Prasad PN (2009) Enchancement of the photovoltaic performance in PbS nanocrystal:P3HT hybrid composite devices by post-treatment-driven ligand exchange. Nanotechnology 20:095202-1–095202-6CrossRefGoogle Scholar
  237. 237.
    de Freitas JN, Gonçalves AS, Nogueira AF (2014) A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells. Nanoscale 6:6371–6397CrossRefGoogle Scholar
  238. 238.
    Noone KM, Strein E, Anderson NC, Wu P-T, Jenekhe SA, Ginger DS (2010) Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solution-processed quantum dots. Nano Lett 10:2635–2639CrossRefGoogle Scholar
  239. 239.
    Klem EJD, MacNeil DD, Cyr PW, Levina L, Sargent EH (2007) Efficient solution-processed infrared photovoltaic cells: planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution. Appl Phys Lett 90:183113-1–183113-3CrossRefGoogle Scholar
  240. 240.
    Luther JM, Law M, Beard MC, Song Q, Reese MO, Ellingson RJ, Nozik AJ (2008) Schottky solar cells based on colloidal nanocrystal films. Nano Lett 8:3488–3492CrossRefGoogle Scholar
  241. 241.
    Greaney MJ, Brutchey RL (2015) Ligand engineering in hybrid polymer:nanocrystal solar cells. Mater Today 18:31–38CrossRefGoogle Scholar
  242. 242.
    Seo J, Cho MJ, Lee D, Cartwright Prasad PN (2011) Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulphide nanocrystals and a low-bandgap polymer. Adv Mater 8:3984–3988CrossRefGoogle Scholar
  243. 243.
    Zhang Y, Li Z, Ouyang J, Tsang S-W, Lu J, Yu K, Ding J, Tao Y (2012) Hole transfer from PbS nanocrystal quantum dots to polymers and efficient hybrid solar cells utilizing infrared photons. Org Electron 13:2773–2780CrossRefGoogle Scholar
  244. 244.
    Pilliego C, Manca M, Kroon R, Yarema M, Szendrei K, Andersson MR, Heiss W, Loi MA (2012) Charge separation dynamics in a narrow band gap polymer-PbS nanocrystal blend for efficient hybrid solar cells. J Mater Chem 22:24411–24416CrossRefGoogle Scholar
  245. 245.
    Liu Z, Sun Y, Yuan J, Wei H, Huang X, Han L, Wang W, Wang H, Ma W (2013) High-efficiency hybrid solar cells based on polymer/PbSxSe1−x nanocrystals benefiting from vertical phase segregation. Adv Mater 25:5772–5778CrossRefGoogle Scholar
  246. 246.
    Nam M, Kim S, Kim S, Kim S-W, Lee K (2013) Efficient hybrid solar cells using PbSxSe1−x quantum dots and nanorods for broad-range photon absorption and well-assembled charge transfer networks. Nanoscale 5:8202–8209CrossRefGoogle Scholar
  247. 247.
    Colbert AE, Janke EM, Hsieh ST, Subramaniyan S, Schlenker CW, Jenekhe SA, Ginger DS (2013) Hole transfer from low band gap quantum dots to conjugated polymers in organic/inorganic hybrid photovoltaics. J Phys Chem Lett 4:280–284CrossRefGoogle Scholar
  248. 248.
    Nam M, Park J, Kim S-W, Lee K (2014) Broadband-absorbing hybrid solar cells with efficiency greater than 3% based on a bulk heterojunction of PbS quantum dots and a low-bandgap polymer. J Mater Chem A 2:3978–3985CrossRefGoogle Scholar
  249. 249.
    Yuan J, Gallagher A, Liu Z, Sun Y, Ma W (2015) High-efficiency polymer-PbS hybrid solar cells via molecular engineering. J Mater Chem A 3:2572–2579CrossRefGoogle Scholar
  250. 250.
    Firdaus Y, Vandenplas E, Justo Y, Gehlhaar R, Cheyns D, Hens Z, Van der Aueraer M (2014) Enhancement of the photovoltaic performance in P3HT:PbS hybrid solar cells using small size PbS quantum dots. J Appl Phys 118:094305-1–094305-7Google Scholar
  251. 251.
    Firdaus Y, Miranti R, Fron E, Khetubol A, Vandenplas E, Cheyns D, Borchert H, Parisi J, Van der Aueraer M (2015) Charge separation dynamics at bulk heterojunctions between poly(3-hexylthiophene) and PbS quantum dots. J Appl Phys 118:055502-1–055502-16CrossRefGoogle Scholar
  252. 252.
    Borrielo C, Bruno A, Diana R, Di Luccio T, Morvillo P, Ricciardi R, Villani F, Minarini C (2015) PbS nanocrystals in hybrid systems for solar cell applications. Phys Status Solidi A 212:245–251CrossRefGoogle Scholar
  253. 253.
    Giansante C, Mastria R, Lerario G, Moretti L, Kriegel I, Scotognella F, Lanzini G, Carallo S, Esposito M, Biasiucci M, Rizzo A, Gigli G (2015) Molecular-level switching of polymer/nanocrystal non-covalent interactions and application in hybrid solar cells. Adv Funct Mater 25:111–119CrossRefGoogle Scholar
  254. 254.
    Alves JPC (2017) Troca de ligantes em nanopartículas de PbS: influência sobre as propriedades fotofísicas, morfológicas e fotovoltaicas de filmes híbridos. PhD thesis. Universidade Estadual de CampinasGoogle Scholar
  255. 255.
    Kahmann S, Mura A, Protesescu L, Kovalenko MV, Brabec CJ, Loi MA (2015) Opto-electronics of PbS quantum dot and a narrow bandgap polymer blens. J Mater Chem C 5:5499–5505CrossRefGoogle Scholar
  256. 256.
    Choi JJ, Luria J, Hyun B-R, Bartnik AC, Sun L, Lim Y-F, Marohn JA, Wise FW, Hanrath T (2010) Photogenerated exciton dissociation in highly coupled lead salt nanocrystal assemblies. Nano Lett 10:1805–1811CrossRefGoogle Scholar
  257. 257.
    Mastria R, Rizzo A, Giansante C, Ballarini D, Dominici L, Igañas O, Gigli G (2015) Role of polymer in hybrid polymer/PbS quantum dot solar cells. J Phys Chem C 119:14972–14979CrossRefGoogle Scholar
  258. 258.
    Colbert AE, Wu W, Janke EM, Ma F, Ginger DS (2015) Effects of ligands on charge generation and recombination in hybrid polymer/quantum dots solar cells. J Phys Chem C 119:24733–24739CrossRefGoogle Scholar
  259. 259.
    Lu H, Joy J, Gaspar RL, Bradforth SE, Brutchey RL (2016) Iodide-passivated colloidal PbS nanocrystals leading to highly efficient polymer:nanocrystal hybrid solar cells. Chem Mater 28:1897–1906CrossRefGoogle Scholar
  260. 260.
    Kisslinger R, Hua W, Shankar K (2017) Bulk heterojunction solar cells based on blends of conjugated polymers with II–IV and IV–VI inorganic semiconductor quantum dots. Polymers 9:35-1–35-29CrossRefGoogle Scholar
  261. 261.
    Lan X, Voznyy O, de Arquer FPG, Liu M, Xu J, Proppe AH, Walters G, Fan F, Tan H, Liu M, Yang Z, Hoogland S, Sargent EH (2016) 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation. Nano Lett 16:4630–4634CrossRefGoogle Scholar
  262. 262.
  263. 263.
    Henglein A (1993) Physical properties of small metal particles in solution—microelectrode reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471CrossRefGoogle Scholar
  264. 264.
    Kreibig U, Vollmer M (1996) Optical Properties of Metal Clusters. Springer, BerlinGoogle Scholar
  265. 265.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  266. 266.
    Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800CrossRefGoogle Scholar
  267. 267.
    Underwood S, Mulvaney P (1994) Effect of the solution refractive-index on the color of gold colloids. Langmuir 10:3427–3430CrossRefGoogle Scholar
  268. 268.
    Ung T, Liz-Marzan LM, Mulvaney P (2001) Optical properties of thin films of Au@SiO2 particles. J Phys Chem B 105:3441–3452CrossRefGoogle Scholar
  269. 269.
    Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRefGoogle Scholar
  270. 270.
    Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712CrossRefGoogle Scholar
  271. 271.
    Kreibig U, Genzel L (1985) Optical-absorption of small metallic particles. Surf Sci 156:678–700CrossRefGoogle Scholar
  272. 272.
    Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106-1–063106-3CrossRefGoogle Scholar
  273. 273.
    Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21739–21800CrossRefGoogle Scholar
  274. 274.
    Akimov YA, Koh WS (2010) Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology 21:235201-1–235201-6CrossRefGoogle Scholar
  275. 275.
    Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105–1–093105-8CrossRefGoogle Scholar
  276. 276.
    Hägglund C, Zäch M, Petersson G, Kasemo B (2008) Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett 92:053110–1–053110-3Google Scholar
  277. 277.
    Akimov YA, Koh WS, Ostrikov K (2009) Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express 17:10195–10205CrossRefGoogle Scholar
  278. 278.
    Temple TL, Mehanama GDK, Reehal HS, Bagnall DM (2009) Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Sol Energy Mater Sol Cells 93:1978–1985CrossRefGoogle Scholar
  279. 279.
    Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113CrossRefGoogle Scholar
  280. 280.
    Ferry VE, Verschuuren MA, Li HBT, Verhagen E, Walters RJ, Schropp REI, Atwater HA, Polman A (2010) Light trapping in ultrathin plasmonic solar cells. Opt Express 18:A237–A245CrossRefGoogle Scholar
  281. 281.
    Pala RA, White J, Barnard E, Liu J, Brongersma ML (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21:3504–3509CrossRefGoogle Scholar
  282. 282.
    Catchpole KR, Polman A (2008) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113-1–191113-3CrossRefGoogle Scholar
  283. 283.
    Nakayama K, Tanabe K, Atwater HA (2008) Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904-1–121904-3Google Scholar
  284. 284.
    Pryce IM, Koleske DD, Fischer AJ, Atwater HA (2010) Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells. Appl Phys Lett 96:153501-1–153501-3CrossRefGoogle Scholar
  285. 285.
    Hägglund C, Zach M, Kasemo B (2008) Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl Phys Lett 92:013113-1–013113-3Google Scholar
  286. 286.
    Standridge SD, Schatz GC, Hupp JT (2009) Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J Am Chem Soc 131:8407–8409CrossRefGoogle Scholar
  287. 287.
    Du L, Furube A, Yamamoto K, Hara K, Katoh R, Tachiya M (2009) Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: dependence on TiO2 particle size. J Phys Chem C 113:6454–6462CrossRefGoogle Scholar
  288. 288.
    Sudeep PK, Takechi K, Kamat PV (2007) Harvesting photons in the infrared. Electron injection from excited tricarbocyanine dye (IR-125) into TiO2 and Ag@TiO2 core-shell nanoparticles. J Phys Chem C 111:488–494CrossRefGoogle Scholar
  289. 289.
    Kathiravan A, Kumar PS, Renganathan R, Anandan S (2009) Photoinduced electron transfer reactions between meso-tetrakis(4-sulfonatophenyl)porphyrin and colloidal metal-semiconductor nanoparticles. Colloids Surf A 333:175–181CrossRefGoogle Scholar
  290. 290.
    Grätzel M (2003) Solar cells to dye for. Nature 421:586–587CrossRefGoogle Scholar
  291. 291.
    McFarland EW, Tang J (2003) A photovoltaic device structure based on internal electron emission. Nature 421:616–618CrossRefGoogle Scholar
  292. 292.
    Hussain AM, Neppolian B, Kim SH, Kim JY, Choi H-C, Lee K, Park S-J, Heeger AJ (2009) Improved performance of polymer light-emitting diodes with nanocomposites. Appl Phys Lett 94:073306-1–073306-3CrossRefGoogle Scholar
  293. 293.
    Dhas V, Muduli S, Lee W, Han S-H, Ogale S (2008) Enhanced conversion efficiency in dye-sensitized solar cells based on ZnO bifunctional nanoflowers loaded with gold nanoparticles. Appl Phys Lett 93:243108-1–243108-3CrossRefGoogle Scholar
  294. 294.
    Chen ZH, Tang YB, Liu CP, Leung YH, Yun GD, Chen LM, Wang YQ, Bello I, Zapien JA, Zhang WJ, Lee CS, Lee ST (2009) Vertically aligned ZnO nanorod arrays sensitized with gold nanoparticles for Schottky barrier photovoltaic cells. J Phys Chem C 113:13433–13437CrossRefGoogle Scholar
  295. 295.
    Peh CKN, Ke L, Ho GW (2010) Modification of ZnO nanorods through Au nanoparticles surface coating for dye-sensitized solar cells applications. Mater Lett 64:1372–1375CrossRefGoogle Scholar
  296. 296.
    Jakob M, Levanon H, Kamat PV (2003) Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Lett 3:353–358CrossRefGoogle Scholar
  297. 297.
    Furube A, Du L, Hara K, Katoh R, Tachiya M (2007) Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 129:14852–14853CrossRefGoogle Scholar
  298. 298.
    Guduru S, Singh VP, Rajaputra S, Mishra S, Mangu R, St. Omer I (2010) Characteristics of gold/cadmium sulfide nanowire Schottky diodes. Thin Solid Films 518:1809–1814CrossRefGoogle Scholar
  299. 299.
    Haberer ED, Joo JH, Hodelin JF, Hu EL (2009) Enhanced photogenerated carrier collection in hybrid films of bio-templated gold nanowires and nanocrystalline CdSe. Nanotechnology 29:415206-1–415206-7Google Scholar
  300. 300.
    Yang T-T, Chen W-T, Hsu Y-J, Wei KH, Lin TY, Lin TW (2010) Interfacial charge carrier dynamics in core-shell Au-CdS nanocrystals. J Phys Chem C 114:11414–11420CrossRefGoogle Scholar
  301. 301.
    Arakawa T, Munaoka T, Akiyama T, Yamada S (2009) Effects of silver nanoparticles on photoelectrochemical responses of organic dyes. J Phys Chem C 113:11830–11835CrossRefGoogle Scholar
  302. 302.
    Nicholson PG, Ruiz V, Macpherson JV, Unwin PR (2005) Enhanced visible photoluminescence in ultrathin poly(3-hexylthiophene) films by incorporation of Au nanoparticles. Chem Commun 12:1052–1054CrossRefGoogle Scholar
  303. 303.
    Park JH, Lim YT, Park OO, Kim JK, Yu J-W, Kim YC (2004) Polymer/gold nanoparticle nanocomposite light-emitting diodes: enhancement of electroluminescence stability and quantum efficiency of blue-light-emitting polymers. Chem Mater 16:688–692CrossRefGoogle Scholar
  304. 304.
    Parfenov A, Gryczynski I, Malicka J, Geddes CD, Lakowicz JR (2003) Enhanced fluorescence from fluorophores on fractal silver surfaces. J Phys Chem B 107:8829–8833CrossRefGoogle Scholar
  305. 305.
    Saranthy KV, Narayan KS, Kim J, White JO (2000) Novel fluorescence and morphological structures in gold nanoparticle-polyoctylthiophene based thin films. Chem Phys Lett 318:543–548CrossRefGoogle Scholar
  306. 306.
    Chen XC, Green PF (2010) Control of morphology and its effects on the optical properties of polymer nanocomposites. Langmuir 26:3659–3665CrossRefGoogle Scholar
  307. 307.
    Li F, Zhou Y, Zhang F, Liu X, Zhan Y, Fahlman M (2009) Tuning work function of noble metals as promising cathodes in organic electronic devices. Chem Mater 21:2798–2802CrossRefGoogle Scholar
  308. 308.
    Nakamura M, Yang C, Tajima K, Hashimoto K (2009) High-performance polymer photovoltaic devices with inverted structure prepared by thermal lamination. Sol Energy Mater Sol Cells 93:1681–1684CrossRefGoogle Scholar
  309. 309.
    Chen X, Zhao C, Rothberg L, Ng MK (2008) Plasmon enhancement of bulk heterojunction organic photovoltaic devices by electrode modification. Appl Phys Lett 93:123302-1–123302-3Google Scholar
  310. 310.
    Tjeng LH, Hesper R, Heessels ACL, Heers A, Jonkman HT, Sawatzky GA (1997) Development of the electronic structure in a K-doped C-60 monolayer on a Ag(111) surface. Solid State Commun 103:31–35CrossRefGoogle Scholar
  311. 311.
    Hunt MRC, Modesti S, Rudolf P, Palmer RE (1995) Charge-transfer and structure in C60 adsorption on metal-sufaces. Phys Rev B 51:10039–10047CrossRefGoogle Scholar
  312. 312.
    Chase SJ, Bacsa WS, Mitch MG, Pilione LJ, Lannin JS (1992) Surface-enhanced Raman-scattering and photoemission of C60 on noble-metal surfaces. Phys Rev B 46:7873–7877CrossRefGoogle Scholar
  313. 313.
    Morioka R, Yasui K, Ozawa M, Odoi K, Ichikawa H, Fujita K (2010) Anode buffer layer containing Au nanoparticles for high stability organic solar cells. J Photopolym Sci Technol 23:313–316CrossRefGoogle Scholar
  314. 314.
    Chen F-C, Wu J-L, Lee C-L, Hong Y, Kuo C-H, Huang MH (2009) Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Appl Phys Lett 95:013305-1–013305-3Google Scholar
  315. 315.
    Lee JH, Park JH, Kim JS, Lee DY, Cho K (2009) High efficiency polymer solar cells with wet deposited plasmonic gold nanodots. Org Electron 10:413–420Google Scholar
  316. 316.
    Kim S-S, Na S-I, Jo J, Kim D-Y, Nah Y-C (2008) Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles. Appl Phys Lett 93:073307-1–073307-3Google Scholar
  317. 317.
    Morfa AJ, Rowlen KL, Reilly TH III, Romero MJ, van de Lagemaat J (2008) Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl Phys Lett 92:013504-1–013504-3Google Scholar
  318. 318.
    Tvingstedt K, Persson N-K, Inganas O, Rahachou A, Zozoulenko IV (2007) Surface plasmon increase absorption in polymer photovoltaic cells. Appl Phys Lett 91:113514CrossRefGoogle Scholar
  319. 319.
    Nemes CT, Vikapurapu DK, Petoukhoff CE, Cheung GZ, O’Carroll DM (2013) Absorption and scattering effects by silver nanoparticles near the interface of organic/inorganic semiconductor tandem films. J Nanopart Res 15:1801CrossRefGoogle Scholar
  320. 320.
    Chuang M-K, Lin SW, Chen FC, Chu CW, Hsu CS (2014) Gold nanoparticle-decoratd graphene oxides for plasmonic-enhanced polymer photovoltaic devices. Nanoscale 6:1573–1579CrossRefGoogle Scholar
  321. 321.
    Stenzel O, Stendal A, Voigtsberger K, von Borczykowski C (1995) Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin-film devices by incorporation of metal-clusters. Sol Energy Mater Sol Cells 37:337–348CrossRefGoogle Scholar
  322. 322.
    Mapel JK, Singh M, Baldo MA, Celebi K (2007) Plasmonic excitation of organic double heterostructure solar cells. Appl Phys Lett 90:121102-1–121102-3CrossRefGoogle Scholar
  323. 323.
    Lindquist NC, Luhman WA, Oh S-W, Holmes RJ (2008) Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells. Appl Phys Lett 93:123308-1–123308-3CrossRefGoogle Scholar
  324. 324.
    Westphalen M, Kreibig U, Rostalski J, Luth H, Meissner D (2000) Metal cluster enhanced organic solar cells. Sol Energy Mater Sol Cells 61:97–105CrossRefGoogle Scholar
  325. 325.
    Yakimov A, Forrest SR (2002) High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoculsters. Appl Phys Lett 80:1667–1669CrossRefGoogle Scholar
  326. 326.
    Rand BP, Peumans P, Forrest SR (2004) Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J Appl Phys 96:7519–7526CrossRefGoogle Scholar
  327. 327.
    Kim K, Carroll DL (2005) Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices. Appl Phys Lett 87:203113-1–203113-3Google Scholar
  328. 328.
    Park M, Chin BD, Yu J-W, Chun M-S, Han S-H (2008) Enhanced photocurrent and efficiency of poly(3-hexylthiophene)/fullerene photovoltaic devices by the incorporation of gold nanoparticles. J Ind Eng Chem 14:382–386CrossRefGoogle Scholar
  329. 329.
    Shen H, Bienstman P, Maes B (2009) Plasmonic absorption enhancement in organic solar cells with thin active layers. J Appl Phys 106:073109-1–073109-5Google Scholar
  330. 330.
    Duche D, Torchio P, Escoubas L, Monestier F, Simon J-J, Flory F, Mathian G (2009) Improving light absorption in organic solar cells by plasmonic contribution. Sol Energy Mater Sol Cells 93:1377–1382CrossRefGoogle Scholar
  331. 331.
    Topp K, Borchert H, Johnen F, Tunc AV, Knipper M, von Hauff E, Parisi J, Al-Shamery K (2010) Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells. J Phys Chem A 114:3981–3989CrossRefGoogle Scholar
  332. 332.
    Wang DH, Kim DY, Choi KW, Seo JH, Im SH, Park JH, Park OO, Heeger AJ (2011) Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. Angew Chem Int Ed 50:1–6CrossRefGoogle Scholar
  333. 333.
    de León A, Arias E, Moggio I, Gallardo-Vega C, Ziolo R, Rodríguez O, Trigari S, Giorgetti E, Leibig C, Evans D (2015) Synthesis of mercaptopropyl-(phenylene)s-benzoates passivated gold nanoparticles: implications for plasmonic photovoltaic cells. J Colloid Interface Sci 456:182–189CrossRefGoogle Scholar
  334. 334.
    Conturbia GLC (2009) Células solares baseadas em nanotubos de carbono modificado e nanopartículas de ouro. Dissertation. Universidade Estadual de CampinasGoogle Scholar
  335. 335.
    Reyes-Reyes M, López-Sandoval R, Arenas-Alatorre J, Garibay-Alonso R, Carroll DL, Lastras-Martinez A (2007) Methanofullerene elongated nanostructure formation for enhanced organic solar cells. Thin Solid Films 516:52–57CrossRefGoogle Scholar
  336. 336.
    Yang X, van Duren JKK, Rispens MT, Hummelen JC, Hanssen RAJ, Michels MAJ, Loos J (2004) Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Adv Mater 16:802–806CrossRefGoogle Scholar
  337. 337.
    Hugger S, Thomann R, Heinzel T, Thurn-Albrecht T (2004) Semicrystalline morphology in thin films of poly(3-hexylthiophene). Colloid Polym Sci 282:932–938CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centre for Information Technology Renato Archer (CTI)CampinasBrazil
  2. 2.Laboratory of Nanotechnology and Solar EnergyChemistry Institute, University of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations