Skip to main content

Integrated Lens Antennas

Part of the Signals and Communication Technology book series (SCT)

Abstract

This chapter presents the Integrated Lens Antenna (ILA) technology as it evolved since its introduction aiming to respond to the needs of emerging applications such as high-data-rate communication , intelligent transport , and mm-wave imaging. The topics covered include the ILA design concepts as well as the electromagnetic phenomena intrinsic to dielectric lenses that may affect ILA performance. The aspects of the ILA technology related to selection of the primary feeds, lens materials, and fabrication methods are also revised. A few practical examples are provided to illustrate the current and future trends of this technology.

Keywords

  • Integrated lens antennas
  • Geometrical optics
  • Physical optics
  • Lens feeds
  • Dielectric materials
  • Lens manufacturing
  • Lens profile design
  • Optimization

This is a preview of subscription content, access via your institution.

Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7
Fig. 1.8
Fig. 1.9
Fig. 1.10
Fig. 1.11
Fig. 1.12
Fig. 1.13
Fig. 1.14
Fig. 1.15
Fig. 1.16
Fig. 1.17
Fig. 1.18
Fig. 1.19
Fig. 1.20
Fig. 1.21
Fig. 1.22
Fig. 1.23
Fig. 1.24
Fig. 1.25
Fig. 1.26
Fig. 1.27
Fig. 1.28

References

  1. M.R. Rebeiz, Millimeter-wave and terahertz integrated circuit antennas. Proc. IEEE 80(11), 1748–1770 (1992)

    CrossRef  Google Scholar 

  2. J.V. Rudd, D.M. Mittleman, Influence of substrate-lens design in terahertz time-domain spectroscopy. J. Opt. Soc. Am. B 19(2), 319–329 (2002)

    CrossRef  Google Scholar 

  3. C.A. Fernandes, P.O. Francês, A. Barbosa, Shaped coverage of elongated cells at millimetre waves using a dielectric lens antenna, in European Microwave Conference (EMC), 1995, Bolonha, Italy, September 1995, vol. 1 (1995), pp. 66–70

    Google Scholar 

  4. C.A. Fernandes, Shaped-beam antennas, in Handbook of Antennas in Wireless Communications, Chapter 15, ed. by L.C. Godara (CRC, New York, 2002)

    Google Scholar 

  5. C. Salema, C.A. Fernandes, R.K. Jha, Solid Dielectric Horn Antennas (Artech House, Boston, 1998)

    Google Scholar 

  6. D.F. Filipovic, S.S. Gearhart, G.M. Rebeiz, Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses. IEEE Trans. Microw. Theory Tech. 41(10), 1738–1749 (1993)

    CrossRef  Google Scholar 

  7. D.B. Rutledge, M.S. Muha, Imaging antenna arrays. IEEE Trans. Antennas Propag. AP-30(4), 535–540 (1982)

    CrossRef  Google Scholar 

  8. A.V. Boriskin, G. Godi, R. Sauleau, A.I. Nosich, Small hemielliptic dielectric lens antenna analysis in 2-D: boundary integral equations versus geometrical and physical optics. IEEE Trans. Antennas Propag. 56(2), 485–492 (2008)

    CrossRef  Google Scholar 

  9. A.V. Boriskin, R. Sauleau, Drastic influence of the half-bowtie resonances on the focusing and collimating capabilities of 2-D extended hemielliptical and hemispherical dielectric lenses. J. Opt. Soc. Am. A 27(11), 2442–2449 (2010)

    CrossRef  Google Scholar 

  10. N.T. Nguyen, R. Sauleau, C.J. Martínez Pérez, Very broadband extended hemispherical lenses: role of matching layers for bandwidth enlargement. IEEE Trans. Antennas Propag. 57(7), 1907–1913 (2009)

    CrossRef  Google Scholar 

  11. N.T. Nguyen, N. Delhote, M. Ettorre, D. Baillargeat, L. Le Coq, R. Sauleau, Design and characterization of 60-GHz integrated lens antennas fabricated through ceramic stereolithography. IEEE Trans. Antennas Propag. 58(8), 2757–2762 (2010)

    CrossRef  Google Scholar 

  12. A.V. Boriskin, R. Sauleau, A.I. Nosich, Performance of hemielliptic dielectric lens antennas with optimal edge illumination. IEEE Trans. Antennas Propag. 57(7), 2193–2198 (2009)

    CrossRef  Google Scholar 

  13. B. Barès, R. Sauleau, L. Le Coq, K. Mahdjoubi, A new accurate design method for millimeter-wave homogeneous dielectric substrate lens antennas of arbitrary shape. IEEE Trans. Antennas Propag. 53(3), 1069–1082 (2005)

    CrossRef  Google Scholar 

  14. G. Godi, R. Sauleau, L. Le Coq, D. Thouroude, Design and optimization of three-dimensional integrated lens antennas with genetic algorithm. IEEE Trans. Antennas Propag. 55(3), 770–775 (2007)

    CrossRef  Google Scholar 

  15. C.A. Fernandes, E.B. Lima, J.R. Costa, Broadband integrated lens for illuminating reflector antenna with constant aperture efficiency. IEEE Trans. Antennas Propag. 58(12), 3805–3813 (2010). doi:10.1109/TAP.2010.2078463

    CrossRef  Google Scholar 

  16. N.T. Nguyen, A.V. Boriskin, A. Rolland, L. Le Coq, R. Sauleau, Shaped lens-like dome for UWB antennas with a Gaussian-like radiation pattern. IEEE Trans. Antennas Propag. 61(4), 1658–1664 (2013)

    CrossRef  Google Scholar 

  17. N.T. Nguyen, A.V. Boriskin, A. Rolland, L. Le Coq, R. Sauleau, Size and weight reduction of integrated lens antennas using a cylindrical air cavity. IEEE Trans. Antennas Propag. 60(12), 5993–5998 (2012)

    CrossRef  Google Scholar 

  18. L. Xue, V. Fusco, Patch fed planar dielectric slab extended hemi-elliptical lens antenna. IEEE Trans. Antennas Propag. 56(3), 661–666 (2008)

    CrossRef  Google Scholar 

  19. D.F. Filipovic, G.P. Gauthier, S. Raman, G.M. Rebeiz, Off-axis properties of silicon and quartz dielectric lens antennas. IEEE Trans. Antennas Propag. 45(5), 760–766 (1997)

    CrossRef  Google Scholar 

  20. X. Wu, G.V. Eleftheriades, T.E. van Deventer-Perkins, Design and characterization of single- and multiple-beam mm-wave circularly polarized substrate lens antennas for wireless communications. IEEE Trans. Microw. Theory Tech. 49(3), 431–441 (2001)

    CrossRef  Google Scholar 

  21. A. Karttunen, J. Ala-Laurinaho, R. Sauleau, A.V. Räisänen, Extended hemispherical integrated lens antenna with feeds on a spherical surface, in Proceedings European Conference Antennas Propagation (EuCAP), Gothenburg, Sweden (2013), pp. 2539–2543

    Google Scholar 

  22. A.V. Boriskin, R. Sauleau, Numerical investigation into the design of shaped dielectric lens antennas with improved angular characteristics. Prog. Electromagn. Res. B 30, 279–292 (2011)

    CrossRef  Google Scholar 

  23. G.C. Trichopoulos, G. Mumcu, K. Sertel, L.H. Mosbacker, P. Smith, A novel approach for improving off-axis pixel performance of Terahertz focal plane arrays. IEEE Trans. Microw. Theory Tech. 58(7), 2014–2021 (2010)

    CrossRef  Google Scholar 

  24. J.R. Costa, E.B. Lima, C.A. Fernandes, Compact beam-steerable lens antenna for 60-GHz wireless communications. IEEE Trans. Antennas Propag. 57(10), 2926–2933 (2009). doi:10.1109/TAP.2009.2029288

    CrossRef  Google Scholar 

  25. A.L. Peebles, A dielectric bifocal lens for multibeam antenna applications. IEEE Trans. Antennas Propag. 31(5), 599–606 (1988)

    CrossRef  Google Scholar 

  26. N.T. Nguyen, A.V. Boriskin, L. Le Coq, R. Sauleau, Improvement of scanning performance of integrated lens antenna using a double lens focusing system. IEEE Trans. Antennas Propag. 64(8), 3698–3702 (2016)

    MathSciNet  CrossRef  MATH  Google Scholar 

  27. X. Wu, G.V. Eleftheriades, Two-lens and lens-fed reflector antenna systems for MM-wave wireless communications, in Proceedings of the IEEE Antennas Propagation Symposium (APS), Salt Lake City, UT (2000), pp. 660–663

    Google Scholar 

  28. B. Schoenlinner, X. Wu, J.P. Ebling, G.V. Eleftheriades, G.M. Rebeiz, Wide-scan spherical-lens antennas for automotive radars. IEEE Trans. Microw. Theory Tech. 50(9), 2166–2175 (2002)

    CrossRef  Google Scholar 

  29. J. Thornton, S. Gregson, D. Gray, Aperture blockage and truncation in scanning lens-reflector antennas. IET Microw. Antennas Propag. 4(7), 828–836 (2010). doi:10.1049/iet-map.2009.0283

    CrossRef  Google Scholar 

  30. Z. Sipus, et al., This book/Chapter 2

    Google Scholar 

  31. K.H. Jeong, J. Kim, L.P. Lee, Biologically inspired artificial compound eyes. Science 312, 557–561 (2006)

    CrossRef  Google Scholar 

  32. C.A. Fernandes, E.B. Lima, J.R. Costa, Tapered waveguide feed for integrated dielectric lens antenna performance tests, in EUROCON—International Conference on Computer as a Tool (EUROCON), 27–29 April 2011 (IEEE, 2011), pp. 1–4

    Google Scholar 

  33. J.R. Costa, C.A. Fernandes, Broadband slot feed for integrated lens antennas. IEEE Antennas Wirel. Propag. Lett. 6, 396–400 (2007). doi:10.1109/lawp.2007.900954

    CrossRef  Google Scholar 

  34. A. Neto, UWB, Non dispersive radiation from the planarly fed leaky lens antenna—Part 1: Theory and design. IEEE Trans. Antennas Propag. 58(7), 2238–2247 (2010)

    CrossRef  Google Scholar 

  35. N.T. Nguyen, R. Sauleau, M. Ettorre, L. Le Coq, Focal array fed dielectric lenses: an attractive solution for beam reconfiguration at millimeter waves. IEEE Trans. Antennas Propag. 59(6), 2152–2159 (2011)

    CrossRef  Google Scholar 

  36. D. Lemaire, C.A. Fernandes, P. Sobieski, C.A. Barbosa, A method to overcome the limitations of G.O. in the design of axis-symmetrical lenses. Int. J. Infrared Millimetrew. 17(8), 1377–1390 (1996)

    Google Scholar 

  37. D. Pasqualini, S. Maci, High-frequency analysis of integrated dielectric lens antennas. IEEE Trans. Antennas Propag. 52(3), 840–847 (2004)

    CrossRef  Google Scholar 

  38. P. Otero, G.V. Eleftheriades, J.R. Mosig, Integrated modified rectangular loop slot antenna on substrate lenses for millimeter- and submillimeter-wave frequencies mixer applications. IEEE Trans. Antennas Propag. 46(10), 1489–1497 (1998)

    CrossRef  Google Scholar 

  39. H. Hoteit, R. Sauleau, B. Philippe, Ph Coquet, J.-P. Daniel, Vector and parallel implementations for the FDTD analysis of millimeter wave planar antennas. Int. J. High Speed Comput. 10(2), 209–234 (1999)

    CrossRef  Google Scholar 

  40. A.V. Boriskin, A.I. Nosich, S.V. Boriskina, T.B. Benson, P. Sewell, A. Altintas, Lens or resonator? Electromagnetic behavior of an extended hemielliptical lens for a sub-mm wave receiver. Microw. Opt. Technol. Lett. 43(6), 515–518 (2004)

    CrossRef  Google Scholar 

  41. A.V. Boriskin, A. Rolland, R. Sauleau, A.I. Nosich, Assessment of FDTD accuracy in the compact hemielliptic dielectric lens antenna analysis. IEEE Trans. Antennas Propag. 56(3), 758–764 (2008)

    CrossRef  Google Scholar 

  42. G. Godi, R. Sauleau, D. Thouroude, Performance of reduced size substrate lens antennas for millimeter-wave communications. IEEE Trans. Antennas Propag. 53(4), 1278–1286 (2005)

    CrossRef  Google Scholar 

  43. E.B. Lima, J.R. Costa, M.G. Silveirinha, C.A. Fernandes, ILASH—software tool for the design of integrated lens antennas, in 2008 IEEE Antennas and Propagation Society International Symposium, vols. 1–9 (IEEE, New York, 2008), pp. 863–866

    Google Scholar 

  44. J.R. Costa, C.A. Fernandes, Analysis of small integrated lens antennas using multiple point source physical optics discretization of the feed aperture field. Journees Internationales de Nice sur les Antennes—JINA 1, 466–467 (2004)

    Google Scholar 

  45. Computer Simulation Technology, CST, http://www.cst.com/

  46. D.S. Alexei, N.G.T. Gregory, S. Roman, Hot-electron effect in superconductors and its applications for radiation sensors. Supercond. Sci. Technol. 15(4), R1 (2002)

    CrossRef  Google Scholar 

  47. P.H. Siegel, THz instruments for space. IEEE Trans. Antennas Propag. 55(11), 2957–2965 (2007). doi:10.1109/TAP.2007.908557

    CrossRef  Google Scholar 

  48. L. Liu, H. Xu, R.R. Percy, D.L. Herald, A.W. Lichtenberger, J.L. Hesler, R.M. Weikle, Development of integrated terahertz broadband detectors utilizing superconducting hot-electron bolometers. IEEE Trans. Appl. Supercond. 19(3), 282–286 (2009). doi:10.1109/TASC.2009.2018268

    CrossRef  Google Scholar 

  49. A.D. Semenov, H. Richter, H.W. Hubers, B. Gunther, A. Smirnov, K.S. Il’in, M. Siegel, J.P. Karamarkovic, Terahertz performance of integrated lens antennas with a hot-electron bolometer. IEEE Trans. Microw. Theory Tech. 55(2), 239–247 (2007). doi:10.1109/TMTT.2006.889153

    CrossRef  Google Scholar 

  50. J.R. Costa, C.A. Fernandes, Integrated imaging lens antenna with broadband feeds, in The Second European Conference on Antennas and Propagation, 2007, EuCAP 2007 (2007), pp. 1–6

    Google Scholar 

  51. M.G. Silveirinha, C.A. Fernandes, J.R. Costa, A graphical aid for the complex permittivity measurement at microwave and millimeter wavelengths. IEEE Microw. Wirel. Compon. Lett. 24(6), 421–423 (2014). doi:10.1109/LMWC.2014.2310470

    CrossRef  Google Scholar 

  52. M.N. Afsar, X. Li, H. Chi, An automated 60 GHz open resonator system for precision dielectric measurements. IEEE Trans. Microw. Theory Tech. 38(12), 1845–1853 (1990). doi:10.1109/22.64565

    CrossRef  Google Scholar 

  53. C.A. Fernandes, J.R. Costa, Permittivity measurement and anisotropy evaluation of dielectric materials at millimeter-waves, in XIX IMEKO World Congress: Fundamental and Applied Metrology, Proceedings, Budapest 2009 (IMEKO, 2009), pp. 673–677

    Google Scholar 

  54. M.J.M. van der Vorst, P.J.I. de Maagt, A. Neto, A.L. Reynolds, R.M. Heeres, W. Luinge, M.H.A.J. Herben, Effect of internal reflections on the radiation properties and input impedance of integrated lens antennas-comparison between theory and measurements. IEEE Trans. Microw. Theory Tech. 49(6), 1118–1125 (2001)

    CrossRef  Google Scholar 

  55. K.W. Kim, Y. Rahmat-Samii, Spherical Luneburg lens antennas: engineering characterizations including air gap effects, in Antennas and Propagation Society International Symposium, 21–26 June 1998, vol. 2064 (IEEE, 1998), pp. 2062–2065

    Google Scholar 

  56. N.T. Nguyen, R. Sauleau, C.J. Martinez Perez, M. Ettorre, Finite-difference time-domain simulations of the effects of air gaps in double-shell extended hemispherical lenses. IET Microw. Antennas Propag. 4(1), 35–42 (2010). doi:10.1049/iet-map.2008.0255

    CrossRef  Google Scholar 

  57. A. Bisognin, D. Titz, F. Ferrero, G. Jacquemod, R. Pilard, F. Gianesello, D. Gloria, D. Lugara, E.B. Lima, J.R. Costa, C.A. Fernandes, C. Luxey, Noncollimating MMW polyethylene lens mitigating dual-source offset from a Tx/Rx WiGig module. IEEE Trans. Antennas Propag. 63(12), 5908–5913 (2015). doi:10.1109/TAP.2015.2484420

    MathSciNet  CrossRef  Google Scholar 

  58. A. Bisognin, A. Cihangir, C. Luxey, G. Jacquemod, R. Pilard, F. Gianesello, J.R. Costa, C.A. Fernandes, E.B. Lima, C.J. Panagamuwa, W.G. Whittow, Ball grid array-module with integrated shaped lens for wigig applications in eyewear devices. IEEE Trans. Antennas Propag. 64(3), 872–882 (2016). doi:10.1109/TAP.2016.2517667

    CrossRef  Google Scholar 

  59. L. Fernandes, Developing a system concept and technologies for mobile broadband communications. IEEE Pers. Commun. 2(1), 54–59 (1995). doi:10.1109/98.350865

    CrossRef  Google Scholar 

  60. C.A. Fernandes, Design of shaped lenses for non-symmetric cells in MBS, in Antennas and Propagation Society International Symposium, 1999, 11–16 July 1999, vol. 2444 (IEEE, 1999), pp. 2440–2443

    Google Scholar 

  61. C.A. Fernandes, Shaped dielectric lenses for wireless millimeter-wave communications. IEEE Antennas Propag. Mag. 41(5), 141–150 (1999). doi:10.1109/74.801527

    CrossRef  Google Scholar 

  62. C.A. Fernandes, L.M. Anunciada, Constant flux illumination of square cells for millimeter-wave wireless communications. IEEE Trans. Microw. Theory Tech. 49(11), 2137–2141 (2001). doi:10.1109/22.963149

    CrossRef  Google Scholar 

  63. C.C. Cruz, J.R. Costa, C.A. Fernandes, S.A. Matos, Focal-plane multi-beam dual-band dielectric lens for Ka-band. IEEE Antennas Wirel. Propag. Lett. 16, 432–436 (2017). doi:10.1109/LAWP.2016.2582263

    CrossRef  Google Scholar 

  64. J.R. Costa, M.G. Silveirinha, C.A. Fernandes, Evaluation of a double-shell integrated scanning lens antenna. IEEE Antennas Wirel. Propag. Lett. 7, 781–784 (2008). doi:10.1109/lawp.2008.2008403

    CrossRef  Google Scholar 

  65. J.R. Costa, C.A. Fernandes, G. Godi, R. Sauleau, L. Le Coq, H. Legay, Compact Ka-band lens antennas for LEO satellites. IEEE Trans. Antennas Propag. 56(5), 1251–1258 (2008). doi:10.1109/tap.2008.922690

    CrossRef  Google Scholar 

  66. J.R. Costa, E.B. Lima, C.R. Medeiros, T. Radil, R.C. Martins, P.M. Ramos, C.A. Fernandes, Development of an indoor wireless personal area network based on mechanically steered millimeter-wave lens antenna, in Instrumentation and Measurement Technology Conference (I2MTC), 3–6 May 2010 (IEEE, 2010), pp. 1202–1206

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge contributions of the former students and postdocs at IETR (France), namely: Barbara Barès, Gaël Godi, Anthony Rolland, Tinh Nguyen, and others and at IT (Portugal): Eduardo Lima, Carla Medeiros, Catarina Cruz, and others. The authors also thank Laurent Le Coq for antenna measurements. The authors acknowledge the collaboration from Vasco Fred, Jorge Farinha, and Carlos Brito for prototype construction, and António Almeida and Jorge Silva for prototype measurements. The authors also thank Maarten van der Vorst for discussions on some aspects of the lens design. The authors are also indebted to numerous students that actively contributed to this work in the framework of their theses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem V. Boriskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Boriskin, A.V., Sauleau, R., Costa, J.R., Fernandes, C. (2018). Integrated Lens Antennas. In: Boriskin, A., Sauleau, R. (eds) Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62773-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62773-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62772-4

  • Online ISBN: 978-3-319-62773-1

  • eBook Packages: EngineeringEngineering (R0)