Skip to main content

Antenna Measurements at Millimeter and Submillimeter Wavelengths

  • Chapter
  • First Online:
Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications

Abstract

Testing of electrically large, high-gain antennas as well as that of small integrated antennas at millimeter and submillimeter wavelengths is extremely challenging. Basically, there are three methods for measuring radiation properties of an antenna: the far-field method, the near-field method, and the compact antenna test range (CATR). In case of large antennas, the classical far-field method has two major obstacles at mm and submm wavelengths: impractically large measurement distance and high atmospheric loss. The planar near-field scanning method has been used up to 1 THz. However, the applied near-field methods often give useful information only on the main beam and its vicinity, because the field-sampling is typically very sparse. Reflector-based and hologram-based compact antenna test range (CATR) measurements have been demonstrated up to 500 GHz and 650 GHz, respectively. In the case of small integrated antennas, various techniques for on-wafer measurements have been developed. This chapter discusses the theory, techniques and limitations of the various test methods—the far-field method, planar near-field scanning and CATR as well as on-wafer measurements. Also, antenna pattern correction techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. G.E. Evans, Antenna Measurement Techniques (Artech House Inc. 1990)

    Google Scholar 

  2. D. Slater, P. Stek, R. Cofield, R. Dengler, J. Hardy, R. Jarnot, R. Swindlehurst, A large aperture 650 GHz near-field measurement system for the earth observing system microwave limb sounder, in Proceedings of 23rd AMTA, Oct. 2001, Denver, USA, pp. 468–473

    Google Scholar 

  3. J. Hartmann, J. Habersack, H.-J. Steiner, J. Lemanczyk, P. de Maagt, Calibration and verification measurements in compensated compact ranges up to 500 GHz, in Proceedings of 23rd AMTA, Denver, USA, Oct 2001, pp. 377–382

    Google Scholar 

  4. W. Menzel, B. Huder, Compact range for millimeter-wave frequencies using a dielectric lens. Electron. Lett. 20(19), 768–769 (1984)

    Article  Google Scholar 

  5. T. Hirvonen, J. Tuovinen, A. Räisänen, Lens-type compact antenna test range at mm-waves, in 21st European Microwave Conference Proceedings (Microwave Exhibitions and Publishers Ltd., Kent, England, 1991), pp. 1079–1083

    Google Scholar 

  6. J. Ala-Laurinaho, T. Hirvonen, P. Piironen, A. Lehto, J. Tuovinen, A.V. Räisänen, U. Frisk, Measurement of the Odin telescope at 119 GHz with a hologram type CATR. IEEE Trans. Antennas Propag. 49(9), 1264–1270 (2001)

    Article  Google Scholar 

  7. A. Lönnqvist, T. Koskinen, J. Häkli, J. Säily, J. Ala-Laurinaho, J. Mallat, V. Viikari, J. Tuovinen, A.V. Räisänen, Hologram-based compact range for submillimeter-wave antenna testing. IEEE Trans. Antennas Propag. 53(10), 3151–3159 (2005)

    Article  Google Scholar 

  8. A. Karttunen, J. Ala-Laurinaho, M. Vaaja, T. Koskinen, J. Häkli, A. Lönnqvist, J. Mallat, A. Tamminen, V. Viikari, A.V. Räisänen, Antenna tests with a hologram-based CATR at 650 GHz. IEEE Trans. Antennas Propag. 57(3), 711–720 (2009)

    Article  Google Scholar 

  9. A.V. Räisänen, Frequency multipliers for millimeter and submillimeter wavelengths. Proc. IEEE 80(11), 1842–1852 (1992)

    Article  Google Scholar 

  10. G. Carpintero, L.E. García Muñoz, H.L. Hartnagel, S. Preu, A.V. Räisänen (eds.) Semiconductor Terahertz Technology: Devices and Systems at Room Temperature Operation (Wiley, 2015)

    Google Scholar 

  11. Keysight Technologies, http://www.keysight.com/en/pc-1000000457%3Aepsg%3Apgr/network-analyzer?nid=-536902444.0&cc=US&lc=eng

  12. Anritsu, http://www.anritsu.com/en-us/products-solutions/products/ms4640b-series.aspx

  13. Rohde & Schwarz. https://www.rohde-schwarz.com/en/products/test-measurement/network-analyzers/pg_overview_64043.html

  14. Virginia Diodes Inc. http://vadiodes.com/index.php/en/about-vdi

  15. R.E. Collin, Antennas and Radiowave Propagation (McGraw-Hill, 1985)

    Google Scholar 

  16. A.D. Yaghjian, An overview of near-field antenna measurements. IEEE Trans. Antennas Propag. 34(1), 30–45 (1986)

    Article  Google Scholar 

  17. C.A. Balanis, Antenna Theory: Analysis and Design, 3rd edn. (Wiley, 2005)

    Google Scholar 

  18. M.H. Francis, Aperture-sampling requirements. IEEE Antennas Propag. Mag. 39(5), 76–81 (1997)

    Article  Google Scholar 

  19. J. Säily, P. Eskelinen, A.V. Räisänen, Pilot signal-based real-time measurement and correction of phase errors caused by microwave cable flexing in planar near-field tests. IEEE Trans. Antennas Propag. 51(2), 195–200 (2003)

    Article  Google Scholar 

  20. D. Slater, “A 550 GHz near-field antenna measurement system for the NASA Submillimeter Wave Astronomy Satellite,” in Antenna Measurement Techniques Association Conference, October 3–7, 1994

    Google Scholar 

  21. R.G. Yaccarino, Y. Rahmat-Samii, A comparison of conventional and phaseless planar near-field antenna measurements: the effect of probe position errors, in Proc. of IEEE Int. Conference on Phased Array Systems and Technology, Dana Point, CA, USA, 21–25 May 2000, pp. 525–528

    Google Scholar 

  22. T. Isernia, G. Leone, R. Pierri, Radiation pattern evaluation from near-field intensities on planes. IEEE Trans. Antennas Propag. 44(5), 701–710 (1996)

    Article  Google Scholar 

  23. G. Junkin, T. Huang, J.C. Bennett, Holographic testing of terahertz antennas. IEEE Trans. Antennas Propag. 48(3), 409–417 (2000)

    Article  Google Scholar 

  24. A.C. Newell, Error analysis techniques for planar near-field measurements. IEEE Trans. Antennas Propag. 36(6), 754–768 (1988)

    Article  Google Scholar 

  25. IEEE Recommended Practice for Near-Field Antenna Measurements, IEEE Std 1720-2012 (IEEE, New York, 2012)

    Google Scholar 

  26. IEEE Standards Test Procedures for Antennas, IEEE Std. 149-1979 (Wiley, 1979)

    Google Scholar 

  27. Y. Mizuguchi, M. Akagawa, H. Yokoi, Offset gregorian antenna. Electron. Commun. Jpn. 61-B(3), 58–66 (1978)

    Google Scholar 

  28. C. Dragone, Offset antennas with perfect pattern symmetry and polarization discrimination. Bell Syst. Tech. J. 57(7), 2663–2684 (1978)

    Article  Google Scholar 

  29. L.H. Hemming, Electromagnetic Anechoic Chambers: A Fundamental Design and Specification Guide (IEEE Press and John Wiley Interscience, 2002)

    Google Scholar 

  30. Microwave Vision Group, http://www.microwavevision.com/

  31. A. Lönnqvist, A. Tamminen, J. Mallat, A.V. Räisänen, Monostatic reflectivity measurement of radar absorbing materials at 310 GHz. IEEE Trans. Microw. Theory Tech. 54(9), 3486–3491 (2006)

    Article  Google Scholar 

  32. V.J. Vokurka, New compact range with cylindrical reflectors and high efficiency factor, in Proceedings of Electronica 76 Conference, Munich, Germany (1976)

    Google Scholar 

  33. European Space Agency, http://www.esa.int/Our_Activities/Space_Engineering_Technology/Antenna_Test_Facilities_and_Electro-Magnetic_Compatibility_Laboratories/

  34. A.D. Olver, A.A. Saleeb, Lens-type compact antenna range. Electron. Lett. 15(14), 409–410 (1979)

    Article  Google Scholar 

  35. A.A. Saleeb, Theory and design of lens-type compact antenna ranges, p. 279, Doctoral Thesis, Queen Mary & Westfield College, University of London, 1982

    Google Scholar 

  36. A.D. Olver, Compact antenna test ranges, in Proceedings of the Seventh International Conference on Antennas and Propagation (ICAP), York, UK, (1991), pp. 99–108

    Google Scholar 

  37. J. Tuovinen, A. Vasara, A. Räisänen, A new type of compact antenna test range, in Proceedings of the 22nd European Microwave Conference, Espoo, Finland, vol. 1, (1992), pp. 503–508

    Google Scholar 

  38. A. Vasara, J. Turunen, A. Friberg, Realization of nondiffracting beams with computer-generated holograms. J. Opt. Soc. Am. A 6, 1748–1754 (1989)

    Article  Google Scholar 

  39. J. Meltaus, J. Salo, E. Noponen, M.M. Salomaa, V. Viikari, A. Lönnqvist, T. Koskinen, J. Säily, J. Häkli, J. Ala-Laurinaho, J. Mallat, A.V. Räisänen, Millimeter-wave beam shaping using holograms. IEEE Trans. Microw. Theory Tech. 51(4), 1274–1280 (2003)

    Article  Google Scholar 

  40. A. Tamminen, A. Karttunen, M. Vaaja, E. Noponen, J. Ala-Laurinaho, J. Mallat, A.V. Räisänen, Reflection-type phase hologram for beam shaping: Experimental results at 310 GHz, in Proceedings of the 30th ESA Antenna Workshop, Noordwijk, The Netherlands, 27–30 May 2008, pp. 470–473

    Google Scholar 

  41. J. Häkli, T. Koskinen, A. Lönnqvist, J. Säily, V. Viikari, J. Mallat, J. Ala-Laurinaho, J. Tuovinen, A.V. Räisänen, Testing of a 1.5 m reflector antenna at 322 GHz in a CATR based on a hologram. IEEE Trans. Antennas Propag. 53(10), 3142–3150 (2005)

    Article  Google Scholar 

  42. T. Hirvonen, J. Ala-Laurinaho, J. Tuovinen, A.V. Räisänen, A compact antenna test range based on a hologram. IEEE Trans. Antennas Propag. 45(8), 1270–1276 (1997)

    Article  Google Scholar 

  43. Z. Li, J. Ala-Laurinaho, Z. Du, A.V. Räisänen, Realization of wideband hologram Compact Antenna Test Range by linearly adjusting the feed location. IEEE Trans. Antennas Propag. 62(11), 5628–5633 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. V. Viikari, J. Häkli, J. Ala-Laurinaho, J. Mallat, A.V. Räisänen, A feed scanning based APC technique for compact antenna test ranges. IEEE Trans. Antennas Propag. 53(10), 3160–3165 (2005)

    Article  Google Scholar 

  45. A.M. Predoehl, W.L. Stutzman, Implementation and results of a time-domain gating system for a far-field range, in Proceedings of the 19th Annual Meeting & Symposium of the Antenna Measurement Techniques Association (AMTA), Boston, MA, USA, 17–21 Nov 1997, pp. 8–12

    Google Scholar 

  46. B. Fourestie, Z. Altman, J. Wiart, A. Azoulay, On the use of the matrix-pencil method to correlate measurements at different test sites. IEEE Trans. Antennas Propag. 47(10), 1569–1573 (1999)

    Article  Google Scholar 

  47. B. Fourestie, Z. Altman, Gabor schemes for analyzing antenna measurements. IEEE Trans. Antennas Propag. 49(9), 1245–1253 (2001)

    Article  Google Scholar 

  48. V. Viikari, J. Mallat, J. Ala-Laurinaho, J. Häkli, A.V. Räisänen, A frequency shift technique for pattern correction in hologram-based CATRs. IEEE Trans. Antennas Propag. 54(10), 2963–2968 (2006)

    Article  Google Scholar 

  49. J. Appel-Hansen, Reflectivity level of radio anechoic chambers. IEEE Trans. Antennas Propag. AP-21(4), 490–498 (1973)

    Article  Google Scholar 

  50. M.D. Migliore, Filtering environmental reflections in far-field antenna measurement in semi-anechoic chambers by an adaptive pattern strategy. IEEE Trans. Antennas Propag. 52(4), 1112–1115 (2004)

    Article  MathSciNet  Google Scholar 

  51. V. Viikari, V.-M. Kolmonen, J. Salo, A.V. Räisänen, Antenna pattern correction technique based on an adaptive array algorithm. IEEE Trans. Antennas Propag. 55(8), 2194–2199 (2007)

    Article  Google Scholar 

  52. V. Viikari, A.V. Räisänen, Antenna pattern correction technique based on signal to interference ratio optimization. IEEE Antennas Wirel. Propag. Lett. 6, 267–270 (2007)

    Article  Google Scholar 

  53. P.L. Garcia Muller, J.L. Cano, R. Torres, A deconvolution method for correcting antenna measurement errors in compact antenna test ranges, in Proceedings of the 17th Annual Antenna Measurement Techniques Association (AMTA) Meeting and Symposium, USA, 1995, pp. 509–514

    Google Scholar 

  54. G. Hindman, A.C. Newell, Mathematical absorber reflection suppression (mars) for anechoic chamber evaluation and improvement, in Proceeings of the 30th Annual Antenna Measurement Techniques Association (AMTA) Meeting and Symposium, USA, 2008

    Google Scholar 

  55. I.J. Gupta, Stray signal source location in far-field antenna/RCS ranges. IEEE Antennas Propag. Mag. 46(3), 20–29 (2009)

    Article  Google Scholar 

  56. T.P. Delfeld, F.C. Delfeld, Use of the MUSIC algorithm in the analysis of compact range field probe data, in Proceedings of the 11th Annual Antenna Measurement Techniques Association (AMTA) Meeting and Symposium, Monterey, CA, USA, 9–13 Oct 1989, pp. 6-3–6-9

    Google Scholar 

  57. I.J. Gupta, W.D. Burnside, Imaging the compact range probe data, in Proceedings of the 12th Annual Antenna Measurement Techniques Association (AMTA) Meeting and Symposium, Philadelphia, PA, USA, 1990, pp. 14-13–14-17

    Google Scholar 

  58. J.C. Bennett, A.P. Anderson, P.A. Mclnnes, A.J.T. Whittaker, Microwave holographic metrology of large reflector antenna. IEEE Trans. Antennas Propag. AP-24(3), 295–303 (1976)

    Article  Google Scholar 

  59. P.F. Goldsmith, N.R. Erickson, Holographic measurements, in Kraus, J.D (ed.) Chapter 6 “Radio-telescope antennas” in the 2nd edition of Radio Astronomy (Cygnus-Quasar Books, 1986), pp. 6-63–6-64

    Google Scholar 

  60. J.M. Payne, Millimeter and submillimeter wavelength radio astronomy. Proc. IEEE 77(7), 993–1016 (1989)

    Article  Google Scholar 

  61. J.W.M. Baars, R. Lucas, J.G. Mangum, J.A. Lopez-Perez, Near-field radio holography of large reflector antennas. IEEE Antennas Propag. Mag. 49(5), 1–14 (2007)

    Article  Google Scholar 

  62. P.J. Napier, R.H.T. Bates, Antenna aperture distributions from holographic-type radiation pattern measurement. Proc. IEEE. 120(1), 30–34 (1973)

    Article  Google Scholar 

  63. G. Junkin, Phase shifting holography for THz near-field/far-field prediction. Prog. Electromagnet. Res. Lett. 44, 15–21 (2014)

    Article  Google Scholar 

  64. A. Arboleya, J. Laviada, J. Ala-Laurinaho, Y. Álvarez, F. Las-Heras, A.V. Räisänen, Phaseless characterization of broadband antennas. IEEE Trans. Antennas Propag. 64(2), 484–495 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  65. W.-H. Lee, Computer-generated holograms: techniques and applications, in E. Wolf (ed.) Progress in Optics XVI (Elsevier, Amsterdam, 1978) pp. 121–231

    Google Scholar 

  66. L. Roy, M. Li, S. Labonte, N.R.S. Simons, Measurement techniques for integrated-circuit slot antennas. IEEE Trans. Instrum. Meas. 46(4), 1000–1004 (1997)

    Article  Google Scholar 

  67. R.N. Simmons, Novel on-wafer radiation pattern measurement technique for MEMS actuator based reconfigurable patch antennas, in Proceedings of the 24th Annual Antenna Measurement Techniques Association Meeting and Symposium, Cleveland, Ohio, 3–8 Nov 2002

    Google Scholar 

  68. T. Zwick, C. Baks, U.R. Pfeiffer, D. Liu, B.P. Gaucher, Probe based MMW antenna measurement setup, in Proceedings of the IEEE AP-S Symposium 2004, Monterey, CA, USA, vol. 1, 20–25 June 2004, pp. 747–750

    Google Scholar 

  69. S. Ranvier, M. Kyrö, C. Icheln, C. Luxey, R. Staraj, P. Vainikainen, Compact 3-D on-wafer radiation pattern measurement system for 60 GHz antennas. Microw. Opt. Technol. Lett. 51(2), 319–324 (2009)

    Article  Google Scholar 

  70. K. Mohammadpour-Aghdam, S. Brebel, A. Enayati, R. Faraji-Dana, G.A.E. Vandenbosch, W. Deraedt, RF probe influence study in millimeter-wave antenna pattern measurements. Int. J. RF Microw. Comput. Aided Eng. 21(4), 413–420 (2011)

    Article  Google Scholar 

  71. B. Klein, M. Jenning, P. Seiler, K. Wolf, D. Plettemeier, Verification and demonstration up to 67 GHz of an on-chip antenna pattern measurement setup, in Proceedings of IEEE Conference on Antenna Measurements and Applications (CAMA), Antibes Juan-les-Pins, France, 16–19 Nov 2014

    Google Scholar 

  72. T. Calazans, H.D. Griffiths, A. L. Cullen, D.E.N. Davies, R. Benjamin, Antenna radiation pattern measurement using a near-field wire scattering technique. IEEE Proc. Microw. Antennas Propag. 145(3), 263–267 (1998)

    Article  Google Scholar 

  73. Z. Du, V. Viikari, J. Ala-Laurinaho, A. Tamminen, A.V. Räisänen, Antenna pattern retrieval from reflection coefficient measurements with reflective loads. Prog. Electromagn. Res. 148, 15–22 (2014)

    Article  Google Scholar 

  74. V. Viikari, Z. Du, V. Semkin, J. Ala-Laurinaho, A.V. Räisänen, Reflection coefficient method for characterizing antennas on probe stations, in Proceedings of the 9th European Conference on Antennas and Propagation, Lisbon, Portugal, 12–17 Apr 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti V. Räisänen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Räisänen, A.V., Ala-Laurinaho, J., Crowe, T., Pivnenko, S., Castañer, M.S., Viikari, V. (2018). Antenna Measurements at Millimeter and Submillimeter Wavelengths. In: Boriskin, A., Sauleau, R. (eds) Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62773-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62773-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62772-4

  • Online ISBN: 978-3-319-62773-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics