Advertisement

Epigenetic Effects of Air Pollution

  • Ernesto BurgioEmail author
  • Agostino Di Ciaula
Chapter

Abstract

Air pollutants (primarily ultrafine particles) can easily cross the biological barriers (lung-blood barrier, placenta, blood-brain barrier, cell and nuclear membranes) reaching all possible targets (including the central nervous system and embryo-fetal tissues during development), generating oxidative damage, interfering with intracellular signaling, with neuro-immune and endocrine systems, with cellular differentiation and proliferation (including stem cells and gametes), with DNA transcription/translation, and with protein folding. Besides acute effects, through these mechanisms, air pollution promotes a wide panel of chronic noncommunicable diseases both in adults and children: immune and neurodevelopmental (ADHD, autism spectrum disorders) disorders, metabolic (obesity, type 1 and type 2 diabetes) and neurodegenerative diseases (Alzheimer and Parkinson), and cancer. The burden of all these diseases is rapidly rising worldwide. Genetic factors have a limited impact on this epidemiological transition, whereas a key role seems to be played by early environmentally induced epigenetic variations (DNA methylation, histone acetylation/deacetylation, noncoding microRNAs) leading to altered fetal programming and transgenerational transmission of risk. The ability of common and widespread air pollutants to interfere with the epigenetic setting of cells and with the fetal programming has been widely demonstrated. On the other hand, the increasing knowledge of the health effects of pollution and of the associated pathogenic mechanisms could allow the implementation of primary prevention measures (in particular pointing to the safeguard of pregnancy and the perinatal period) aimed to reduce the growing incidence of chronic diseases and the related unsustainable health costs.

Keywords

Epigenetics Epigenome Air pollution UFP – ultrafine particles Fetal programming DOHaD – developmental origins of health and disease 

References

  1. 1.
    Prüss-Ustün A, Wolf J, Corvalán C, Bos R, Neira M. Preventing disease through healthy environments. A global assessment of the burden of disease from environmental risks. Geneva: WHO; 2016.Google Scholar
  2. 2.
    Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng AT, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FG, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD III, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang YH, Khatibzadeh S, Khoo JP, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Lin JK, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Mohd Hanafiah K, Mokdad AA, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson PK, Nolla JM, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CD, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Pope CA III, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KR, Stapelberg NJ, Steenland K, Stockl H, Stovner LJ, Straif K, Straney L, Thurston GD, Tran JH, Van Dingenen R, van Donkelaar A, Veerman JL, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray CJ, Ezzati M, MA AM, Memish ZA. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2224–60.  https://doi.org/10.1016/S0140-6736(12)61766-8.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kaatsch P, Steliarova-Foucher E, Crocetti E, Magnani C, Spix C, Zambon P. Time trends of cancer incidence in European children (1978-1997): report from the automated childhood cancer information system project. Eur J Cancer. 2006;42(13):1961–71.  https://doi.org/10.1016/j.ejca.2006.05.014.PubMedCrossRefGoogle Scholar
  4. 4.
    Fombonne E. Epidemiology of pervasive developmental disorders. Pediatr Res. 2009;65(6):591–8.  https://doi.org/10.1203/PDR.0b013e31819e7203.PubMedCrossRefGoogle Scholar
  5. 5.
    Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3(3):186–91.  https://doi.org/10.1016/j.jalz.2007.04.381.PubMedCrossRefGoogle Scholar
  6. 6.
    Roth J, Qiang X, Marban SL, Redelt H, Lowell BC. The obesity pandemic: where have we been and where are we going? Obes Res. 2004;12(Suppl 2):88S–101S.  https://doi.org/10.1038/oby.2004.273.PubMedCrossRefGoogle Scholar
  7. 7.
    Stein CJ, Colditz GA. The epidemic of obesity. J Clin Endocrinol Metab. 2004;89(6):2522–5.  https://doi.org/10.1210/jc.2004-0288.PubMedCrossRefGoogle Scholar
  8. 8.
    Stevens GA, Singh GM, Lu Y, Danaei G, Lin JK, Finucane MM, Bahalim AN, McIntire RK, Gutierrez HR, Cowan M, Paciorek CJ, Farzadfar F, Riley L, Ezzati M, Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating G. National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metrics. 2012;10(1):22.  https://doi.org/10.1186/1478-7954-10-22.CrossRefGoogle Scholar
  9. 9.
    Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.  https://doi.org/10.1016/j.diabres.2009.10.007.PubMedCrossRefGoogle Scholar
  10. 10.
    Di Ciaula A. Association between air pollutant emissions and type 1 diabetes incidence in European countries. Adv Res. 2014;2(7):409–25.CrossRefGoogle Scholar
  11. 11.
    Patterson CC, Gyurus E, Rosenbauer J, Cinek O, Neu A, Schober E, Parslow RC, Joner G, Svensson J, Castell C, Bingley PJ, Schoenle E, Jarosz-Chobot P, Urbonaite B, Rothe U, Krzisnik C, Ionescu-Tirgoviste C, Weets I, Kocova M, Stipancic G, Samardzic M, de Beaufort CE, Green A, Dahlquist GG, Soltesz G. Trends in childhood type 1 diabetes incidence in Europe during 1989-2008: evidence of non-uniformity over time in rates of increase. Diabetologia. 2012;55(8):2142–7.  https://doi.org/10.1007/s00125-012-2571-8.PubMedCrossRefGoogle Scholar
  12. 12.
    Burgio E. Environmental and fetal programming: the origins of some current “pandemics”. J Pediatr Neonat Individual Med. 2015;4(2):e040237.  https://doi.org/10.7363/040237.Google Scholar
  13. 13.
    Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396–8.  https://doi.org/10.1038/nature05913.PubMedCrossRefGoogle Scholar
  14. 14.
    Burgio E. Notes on the epigenetic origins of childhood cancer. Epidemiol Prev. 2013;37(1 Suppl 1):261–5.PubMedGoogle Scholar
  15. 15.
    Burgio E, Migliore L. Towards a systemic paradigm in carcinogenesis: linking epigenetics and genetics. Mol Biol Rep. 2015;42(4):777–90.  https://doi.org/10.1007/s11033-014-3804-3.PubMedCrossRefGoogle Scholar
  16. 16.
    Lopomo A, Burgio E, Migliore L. Epigenetics of obesity. Prog Mol Biol Transl Sci. 2016;140:151–84.  https://doi.org/10.1016/bs.pmbts.2016.02.002.PubMedCrossRefGoogle Scholar
  17. 17.
    Byrne CD, Phillips DI. Fetal origins of adult disease: epidemiology and mechanisms. J Clin Pathol. 2000;53(11):822–8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Gluckman PD, Hanson MA. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res. 2004;56(3):311–7.  https://doi.org/10.1203/01.PDR.0000135998.08025.FB.PubMedCrossRefGoogle Scholar
  19. 19.
    Landrigan PJ, Sonawane B, Butler RN, Trasande L, Callan R, Droller D. Early environmental origins of neurodegenerative disease in later life. Environ Health Perspect. 2005;113(9):1230–3.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    World Health Organization. Review of evidence on health aspects of air pollution - REVIHAAP project- first results. Denmark: World Health Organization–Regional Office for Europe; 2013.Google Scholar
  21. 21.
    Cui Y, Jia F, He J, Xie X, Li Z, Fu M, Hao H, Liu Y, Liu DZ, Cowan PJ, Zhu H, Sun Q, Liu Z. Ambient fine particulate matter suppresses in vivo proliferation of bone marrow stem cells through reactive oxygen species formation. PLoS One. 2015;10(6):e0127309.  https://doi.org/10.1371/journal.pone.0127309.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cui Y, Sun Q, Liu Z. Ambient particulate matter exposure and cardiovascular diseases: a focus on progenitor and stem cells. J Cell Mol Med. 2016;20(5):782–93.  https://doi.org/10.1111/jcmm.12822.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Wadhwa PD, Buss C, Entringer S, Swanson JM. Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med. 2009;27(5):358–68.  https://doi.org/10.1055/s-0029-1237424.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Somers CM. Ambient air pollution exposure and damage to male gametes: human studies and in situ ‘sentinel’ animal experiments. Syst Biol Reprod Med. 2011;57(1–2):63–71.  https://doi.org/10.3109/19396368.2010.500440.PubMedCrossRefGoogle Scholar
  25. 25.
    Yauk CL, Lucas Argueso J, Auerbach SS, Awadalla P, Davis SR, Demarini DM, Douglas GR, Dubrova YE, Elespuru RK, Glover TW, Hales BF, Hurles ME, Klein CB, Lupski JR, Manchester DK, Marchetti F, Montpetit A, Mulvihill JJ, Robaire B, Robbins WA, Rouleau GA, Shaughnessy DT, Somers CM, Taylor JG, Trasler J, Waters MD, Wilson TE, Witt KL, Bishop JB. Harnessing genomics to identify environmental determinants of heritable disease. Mutat Res. 2013;752(1):6–9.  https://doi.org/10.1016/j.mrrev.2012.08.002.PubMedCrossRefGoogle Scholar
  26. 26.
    Dick CA, Brown DM, Donaldson K, Stone V. The role of free radicals in the toxic and inflammatory effects of four different ultrafine particle types. Inhal Toxicol. 2003;15(1):39–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Donaldson K, Brown DM, Mitchell C, Dineva M, Beswick PH, Gilmour P, MacNee W. Free radical activity of PM10: iron-mediated generation of hydroxyl radicals. Environ Health Perspect. 1997;105(Suppl 5):1285–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Eiguren-Fernandez A, Shinyashiki M, Schmitz DA, DiStefano E, Hinds W, Kumagai Y, Cho AK, Froines JR. Redox and electrophilic properties of vapor- and particle-phase components of ambient aerosols. Environ Res. 2010;110(3):207–12.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Laing S, Wang G, Briazova T, Zhang C, Wang A, Zheng Z, Gow A, Chen AF, Rajagopalan S, Chen LC, Sun Q, Zhang K. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Phys Cell Phys. 2010;299(4):C736–49.CrossRefGoogle Scholar
  30. 30.
    Osornio-Vargas AR, Serrano J, Rojas-Bracho L, Miranda J, Garcia-Cuellar C, Reyna MA, Flores G, Zuk M, Quintero M, Vazquez I, Sanchez-Perez Y, Lopez T, Rosas I. In vitro biological effects of airborne PM(2).(5) and PM(1)(0) from a semi-desert city on the Mexico-US border. Chemosphere. 2011;83(4):618–26.  https://doi.org/10.1016/j.chemosphere.2010.11.073.PubMedCrossRefGoogle Scholar
  31. 31.
    Velasco G. Endoplasmic reticulum stressed by pollution. Focus on “airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues”. Am J Phys Cell Phys. 2010;299(4):C727–8.CrossRefGoogle Scholar
  32. 32.
    Miller MR, Shaw CA, Langrish JP. From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Futur Cardiol. 2012;8(4):577–602.  https://doi.org/10.2217/fca.12.43.CrossRefGoogle Scholar
  33. 33.
    Mills NL, Tornqvist H, Robinson SD, Gonzalez M, Darnley K, MacNee W, Boon NA, Donaldson K, Blomberg A, Sandstrom T, Newby DE. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation. 2005;112(25):3930–6.  https://doi.org/10.1161/CIRCULATIONAHA.105.588962.PubMedCrossRefGoogle Scholar
  34. 34.
    Lucking AJ, Lundback M, Mills NL, Faratian D, Barath SL, Pourazar J, Cassee FR, Donaldson K, Boon NA, Badimon JJ, Sandstrom T, Blomberg A, Newby DE. Diesel exhaust inhalation increases thrombus formation in man. Eur Heart J. 2008;29(24):3043–51.  https://doi.org/10.1093/eurheartj/ehn464.PubMedCrossRefGoogle Scholar
  35. 35.
    Mills NL, Tornqvist H, Gonzalez MC, Vink E, Robinson SD, Soderberg S, Boon NA, Donaldson K, Sandstrom T, Blomberg A, Newby DE. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N Engl J Med. 2007;357(11):1075–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Rittinghausen S, Bellmann B, Creutzenberg O, Ernst H, Kolling A, Mangelsdorf I, Kellner R, Beneke S, Ziemann C. Evaluation of immunohistochemical markers to detect the genotoxic mode of action of fine and ultrafine dusts in rat lungs. Toxicology. 2013;303:177–86.  https://doi.org/10.1016/j.tox.2012.11.007.PubMedCrossRefGoogle Scholar
  37. 37.
    Hartwig A. Role of DNA repair in particle- and fiber-induced lung injury. Inhal Toxicol. 2002;14(1):91–100.PubMedCrossRefGoogle Scholar
  38. 38.
    Ware JH. Particulate air pollution and mortality--clearing the air. N Engl J Med. 2000;343(24):1798–9.PubMedCrossRefGoogle Scholar
  39. 39.
    World Health Organization. Guidelines for air quality. WHO ed., Geneva, Switzerland; 1999.Google Scholar
  40. 40.
    Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdorster G. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114(8):1172–8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Muoth C, Aengenheister L, Kucki M, Wick P, Buerki-Thurnherr T. Nanoparticle transport across the placental barrier: pushing the field forward! Nanomedicine. 2016;11(8):941–57.  https://doi.org/10.2217/nnm-2015-0012.PubMedCrossRefGoogle Scholar
  42. 42.
    Chang C. The immune effects of naturally occurring and synthetic nanoparticles. J Autoimmun. 2010;34(3):J234–46.  https://doi.org/10.1016/j.jaut.2009.11.009.PubMedCrossRefGoogle Scholar
  43. 43.
    Renwick LC, Donaldson K, Clouter A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol Appl Pharmacol. 2001;172(2):119–27.  https://doi.org/10.1006/taap.2001.9128.PubMedCrossRefGoogle Scholar
  44. 44.
    World Health Organization Air quality guidelines, global update 2005. Report on a Working Group meeting, Bonn, Germany; 2005.Google Scholar
  45. 45.
    Ibald-Mulli A, Wichmann HE, Kreyling W, Peters A. Epidemiological evidence on health effects of ultrafine particles. J Aerosol Med. 2002;15(2):189–201.PubMedCrossRefGoogle Scholar
  46. 46.
    Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, Tran L, Stone V. The pulmonary toxicology of ultrafine particles. J Aerosol Med. 2002;15(2):213–20.PubMedCrossRefGoogle Scholar
  47. 47.
    Donaldson K, Seaton A. The Janus faces of nanoparticles. J Nanosci Nanotechnol. 2007;7(12):4607–11.PubMedGoogle Scholar
  48. 48.
    Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol. 2005;2:10.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Duffin R, Mills NL, Donaldson K. Nanoparticles-a thoracic toxicology perspective. Yonsei Med J. 2007;48(4):561–72.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Seaton A, MacNee W, Donaldson K, Godden D. Particulate air pollution and acute health effects. Lancet. 1995;345(8943):176–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdorster G, Ziesenis A. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A. 2002;65(20):1513–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Kreyling WG, Semmler-Behnke M, Moller W. Ultrafine particle-lung interactions: does size matter? J Aerosol Med. 2006;19(1):74–83.PubMedCrossRefGoogle Scholar
  53. 53.
    Schmid O, Moller W, Semmler-Behnke M, Ferron GA, Karg E, Lipka J, Schulz H, Kreyling WG, Stoeger T. Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers. 2009;14(Suppl 1):67–73.  https://doi.org/10.1080/13547500902965617.PubMedCrossRefGoogle Scholar
  54. 54.
    Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol. 2009;29(1):69–78.  https://doi.org/10.1002/jat.1385.PubMedCrossRefGoogle Scholar
  55. 55.
    Hinds WC. Aerosol technology: behavior and measurements of airborne particles. 2nd ed. New York: Wiley Interscience; 1999.Google Scholar
  56. 56.
    Young LH, Keeler GJ. Characterization of ultrafine particle number concentration and size distribution during a summer campaign in southwest Detroit. J Air Waste Manage Assoc. 2004;54(9):1079–90.CrossRefGoogle Scholar
  57. 57.
    Morawska L, Ristovski Z, Jayaratne ER, Keogh DU, Ling X. Ambient nano and ultrafine particles from motor vehicle emissions: characteristics, ambient processing and implications on human exposure. Atmos Environ. 2008;42:8113–38.CrossRefGoogle Scholar
  58. 58.
    Chen R, Meng X, Zhao A, Wang C, Yang C, Li H, Cai J, Zhao Z, Kan H. DNA hypomethylation and its mediation in the effects of fine particulate air pollution on cardiovascular biomarkers: a randomized crossover trial. Environ Int. 2016a;94:614–9.  https://doi.org/10.1016/j.envint.2016.06.026.PubMedCrossRefGoogle Scholar
  59. 59.
    Jayasekher T. Aerosols near by a coal fired thermal power plant: chemical composition and toxic evaluation. Chemosphere. 2009;75(11):1525–30.  https://doi.org/10.1016/j.chemosphere.2009.02.001.PubMedCrossRefGoogle Scholar
  60. 60.
    Rogula-Kozlowska W. Size-segregated urban particulate matter: mass closure, chemical composition, and primary and secondary matter content. Air Qual Atmos Health. 2016;9:533–50.  https://doi.org/10.1007/s11869-015-0359-y.PubMedCrossRefGoogle Scholar
  61. 61.
    Sambandam B, Devasena T, Islam VI, Prakhya BM. Characterization of coal fly ash nanoparticles and their induced in vitro cellular toxicity and oxidative DNA damage in different cell lines. Indian J Exp Biol. 2015;53(9):585–93.PubMedGoogle Scholar
  62. 62.
    Hata M, Chomanee J, Thongyen T, Bao L, Tekasakul S, Tekasakul P, Otani Y, Furuuchi M. Characteristics of nanoparticles emitted from burning of biomass fuels. J Environ Sci. 2014;26(9):1913–20.  https://doi.org/10.1016/j.jes.2014.07.005.CrossRefGoogle Scholar
  63. 63.
    Cernuschi S, Giugliano M, Ozgen S, Consonni S. Number concentration and chemical composition of ultrafine and nanoparticles from WTE (waste to energy) plants. Sci Total Environ. 2012;420:319–26.  https://doi.org/10.1016/j.scitotenv.2012.01.024.PubMedCrossRefGoogle Scholar
  64. 64.
    Maguhn J, Karg E, Kettrup A, Zimmermann R. On-line analysis of the size distribution of fine and ultrafine aerosol particles in flue and stack gas of a municipal waste incineration plant: effects of dynamic process control measures and emission reduction devices. Environ Sci Technol. 2003;37(20):4761–70.PubMedCrossRefGoogle Scholar
  65. 65.
    Cassee FR, Boere AJ, Bos J, Fokkens PH, Dormans JA, Van LH. Effects of diesel exhaust enriched concentrated PM2.5 in ozone preexposed or monocrotaline-treated rats. Inhal Toxicol. 2002;14(7):721–43.PubMedCrossRefGoogle Scholar
  66. 66.
    Seinfeld JH, Pandis SN. Atmospheric chemistry and physics: from air pollution to climate change. 2nd ed. New York: Wiley; 2006.Google Scholar
  67. 67.
    European Commission D-GfSr, Development. ExternE–externalities of energy, Oil & gas, vol. 4: Office for Official Publications of the European Communities; 1995. http://www.externe.info/oldvolumes/vol4.pdf
  68. 68.
    Grosjean D, Seinfeld JH. Parameterization of the formation potential of secondary organic aerosols. Atmos Environ. 1989;23:1733–47.CrossRefGoogle Scholar
  69. 69.
    Janssen NA, Schwartz J, Zanobetti A, Suh HH. Air conditioning and source-specific particles as modifiers of the effect of PM(10) on hospital admissions for heart and lung disease. Environ Health Perspect. 2002;110(1):43–9.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Laden F, Neas LM, Dockery DW, Schwartz J. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect. 2000;108(10):941–7.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Mangia C, Cervino M, Gianicolo EA. Secondary particulate matter originating from an industrial source and its impact on population health. Int J Environ Res Public Health. 2015;12(7):7667–81.  https://doi.org/10.3390/ijerph120707667.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hertz-Picciotto I, Park HY, Dostal M, Kocan A, Trnovec T, Sram R. Prenatal exposures to persistent and non-persistent organic compounds and effects on immune system development. Basic Clin Pharmacol Toxicol. 2008;102(2):146–54.  https://doi.org/10.1111/j.1742-7843.2007.00190.x.PubMedCrossRefGoogle Scholar
  73. 73.
    Zhu MT, Wang Y, Feng WY, Wang B, Wang M, Ouyang H, Chai ZF. Oxidative stress and apoptosis induced by iron oxide nanoparticles in cultured human umbilical endothelial cells. J Nanosci Nanotechnol. 2010;10(12):8584–90.PubMedCrossRefGoogle Scholar
  74. 74.
    Wick P, Malek A, Manser P, Meili D, Maeder-Althaus X, Diener L, Diener PA, Zisch A, Krug HF, von Mandach U. Barrier capacity of human placenta for nanosized materials. Environ Health Perspect. 2010;118(3):432–6.  https://doi.org/10.1289/ehp.0901200.PubMedCrossRefGoogle Scholar
  75. 75.
    Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16(6–7):437–45.  https://doi.org/10.1080/08958370490439597.PubMedCrossRefGoogle Scholar
  76. 76.
    Woodward N, Finch CE, Morgan TE. Traffic-related air pollution and brain development. AIMS Environ Sci. 2015;2(2):353–73.  https://doi.org/10.3934/environsci.2015.2.353.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Huang JP, Hsieh PC, Chen CY, Wang TY, Chen PC, Liu CC, Chen CC, Chen CP. Nanoparticles can cross mouse placenta and induce trophoblast apoptosis. Placenta. 2015;36(12):1433–41.  https://doi.org/10.1016/j.placenta.2015.10.007.PubMedCrossRefGoogle Scholar
  78. 78.
    Blum JL, Xiong JQ, Hoffman C, Zelikoff JT. Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicol Sci. 2012;126(2):478–86.  https://doi.org/10.1093/toxsci/kfs008.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Blum JL, Edwards JR, Prozialeck WC, Xiong JQ, Zelikoff JT. Effects of maternal exposure to cadmium oxide nanoparticles during pregnancy on maternal and offspring kidney injury markers using a murine model. J Toxicol Environ Health Part A. 2015;78(12):711–24.  https://doi.org/10.1080/15287394.2015.1026622.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    El-Sayed YS, Shimizu R, Onoda A, Takeda K, Umezawa M. Carbon black nanoparticle exposure during middle and late fetal development induces immune activation in male offspring mice. Toxicology. 2015;327:53–61.  https://doi.org/10.1016/j.tox.2014.11.005.PubMedCrossRefGoogle Scholar
  81. 81.
    Davis DA, Bortolato M, Godar SC, Sander TK, Iwata N, Pakbin P, Shih JC, Berhane K, McConnell R, Sioutas C, Finch CE, Morgan TE. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses. PLoS One. 2013;8(5):e64128.  https://doi.org/10.1371/journal.pone.0064128.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ghaderi S, Tabatabaei SR, Varzi HN, Rashno M. Induced adverse effects of prenatal exposure to silver nanoparticles on neurobehavioral development of offspring of mice. J Toxicol Sci. 2015;40(2):263–75.  https://doi.org/10.2131/jts.40.263.PubMedCrossRefGoogle Scholar
  83. 83.
    Mohammadipour A, Fazel A, Haghir H, Motejaded F, Rafatpanah H, Zabihi H, Hosseini M, Bideskan AE. Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring. Environ Toxicol Pharmacol. 2014;37(2):617–25.  https://doi.org/10.1016/j.etap.2014.01.014.PubMedCrossRefGoogle Scholar
  84. 84.
    Yoshida S, Hiyoshi K, Oshio S, Takano H, Takeda K, Ichinose T. Effects of fetal exposure to carbon nanoparticles on reproductive function in male offspring. Fertil Steril. 2010;93(5):1695–9.  https://doi.org/10.1016/j.fertnstert.2009.03.094.PubMedCrossRefGoogle Scholar
  85. 85.
    Christensen BC, Marsit CJ. Epigenomics in environmental health. Front Genet. 2011;2:84.  https://doi.org/10.3389/fgene.2011.00084.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Loke YJ, Novakovic B, Ollikainen M, Wallace EM, Umstad MP, Permezel M, Morley R, Ponsonby AL, Gordon L, Galati JC, Saffery R, Craig JM. The peri/postnatal epigenetic twins study (PETS). Twin Res Hum Genet. 2012;16(1):1–8.  https://doi.org/10.1017/thg.2012.114.Google Scholar
  87. 87.
    Mazzio EA, Soliman KF. Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics. 2012;7(2):119–30.  https://doi.org/10.4161/epi.7.2.18764.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105(44):17046–9.  https://doi.org/10.1073/pnas.0806560105.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Yajnik CS. Transmission of obesity-adiposity and related disorders from the mother to the baby. Ann Nutr Metab. 2014;64(Suppl 1):8–17.  https://doi.org/10.1159/000362608.PubMedCrossRefGoogle Scholar
  90. 90.
    Mattick JS, Taft RJ, Faulkner GJ. A global view of genomic information--moving beyond the gene and the master regulator. Trends Genet. 2010;26(1):21–8.  https://doi.org/10.1016/j.tig.2009.11.002.PubMedCrossRefGoogle Scholar
  91. 91.
    Di Ciaula A, Portincasa P. Fat, epigenome and pancreatic diseases. Interplay and common pathways from a toxic and obesogenic environment. Eur J Intern Med. 2014;25(10):865–73.  https://doi.org/10.1016/j.ejim.2014.10.012.PubMedCrossRefGoogle Scholar
  92. 92.
    Lahiri DK, Maloney B, Zawia NH. The LEARn model: an epigenetic explanation for idiopathic neurobiological diseases. Mol Psychiatry. 2009;14(11):992–1003.  https://doi.org/10.1038/mp.2009.82.PubMedCrossRefGoogle Scholar
  93. 93.
    Dang MN, Buzzetti R, Pozzilli P. Epigenetics in autoimmune diseases with focus on type 1 diabetes. Diabetes Metab Res Rev. 2013;29(1):8–18.  https://doi.org/10.1002/dmrr.2375.PubMedCrossRefGoogle Scholar
  94. 94.
    MacFarlane AJ, Strom A, Scott FW. Epigenetics: deciphering how environmental factors may modify autoimmune type 1 diabetes. Mamm Genome. 2009;20(9–10):624–32.  https://doi.org/10.1007/s00335-009-9213-6.PubMedCrossRefGoogle Scholar
  95. 95.
    Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J. Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med. 2009;179(7):572–8.  https://doi.org/10.1164/rccm.200807-1097OC.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    De Prins S, Koppen G, Jacobs G, Dons E, Van de Mieroop E, Nelen V, Fierens F, Int Panis L, De Boever P, Cox B, Nawrot TS, Schoeters G. Influence of ambient air pollution on global DNA methylation in healthy adults: a seasonal follow-up. Environ Int. 2013;59:418–24.  https://doi.org/10.1016/j.envint.2013.07.007.PubMedCrossRefGoogle Scholar
  97. 97.
    Wang C, Chen R, Cai J, Shi J, Yang C, Tse LA, Li H, Lin Z, Meng X, Liu C, Niu Y, Xia Y, Zhao Z, Kan H. Personal exposure to fine particulate matter and blood pressure: a role of angiotensin converting enzyme and its DNA methylation. Environ Int. 2016.  https://doi.org/10.1016/j.envint.2016.07.001.
  98. 98.
    Peng C, Bind MC, Colicino E, Kloog I, Byun HM, Cantone L, Trevisi L, Zhong J, Brennan K, Dereix AE, Vokonas PS, Coull BA, Schwartz JD, Baccarelli AA. Particulate air pollution and fasting blood glucose in non-diabetic individuals: associations and epigenetic mediation in the normative aging study, 2000–2011. Environ Health Perspect. 2016;124(11):1715–21.  https://doi.org/10.1289/EHP183.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Chen R, Hu B, Liu Y, Xu J, Yang G, Xu D, Chen C. Beyond PM2.5: the role of ultrafine particles on adverse health effects of air pollution. Biochim Biophys Acta. 2016b;1860(12):2844–55.  https://doi.org/10.1016/j.bbagen.2016.03.019.PubMedCrossRefGoogle Scholar
  100. 100.
    Somineni HK, Zhang X, Biagini Myers JM, Kovacic MB, Ulm A, Jurcak N, Ryan PH, Khurana Hershey GK, Ji H. Ten-eleven translocation 1 (TET1) methylation is associated with childhood asthma and traffic-related air pollution. J Allergy Clin Immunol. 2016;137(3):797–805.e795.  https://doi.org/10.1016/j.jaci.2015.10.021.PubMedCrossRefGoogle Scholar
  101. 101.
    Hew KM, Walker AI, Kohli A, Garcia M, Syed A, McDonald-Hyman C, Noth EM, Mann JK, Pratt B, Balmes J, Hammond SK, Eisen EA, Nadeau KC. Childhood exposure to ambient polycyclic aromatic hydrocarbons is linked to epigenetic modifications and impaired systemic immunity in T cells. Clin Exp Allergy. 2015;45(1):238–48.  https://doi.org/10.1111/cea.12377.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Gruzieva O, Xu CJ, Breton CV, Annesi-Maesano I, Anto JM, Auffray C, Ballereau S, Bellander T, Bousquet J, Bustamante M, Charles MA, de Kluizenaar Y, den Dekker HT, Duijts L, Felix JF, Gehring U, Guxens M, Jaddoe VV, Jankipersadsing SA, Merid SK, Kere J, Kumar A, Lemonnier N, Lepeule J, Nystad W, Page CM, Panasevich S, Postma D, Slama R, Sunyer J, Soderhall C, Yao J, London SJ, Pershagen G, Koppelman GH, Melen E. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect. 2016;125(1):104–10.  https://doi.org/10.1289/EHP36.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Pacchierotti F, Spano M. Environmental impact on DNA methylation in the germline: state of the art and gaps of knowledge. Biomed Res Int. 2015;2015:123484.  https://doi.org/10.1155/2015/123484.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Hanson MA, Skinner MK. Developmental origins of epigenetic transgenerational inheritance. Environ Epigenet. 2016;2(1):dvw002.  https://doi.org/10.1093/eep/dvw002.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Skinner MK, Guerrero-Bosagna C, Haque MM. Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics. 2015;10(8):762–71.  https://doi.org/10.1080/15592294.2015.1062207.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA. 2016;66(1):7–30.  https://doi.org/10.3322/caac.21332.PubMedGoogle Scholar
  107. 107.
    Vergamini LB, Frazier AL, Abrantes FL, Ribeiro KB, Rodriguez-Galindo C. Increase in the incidence of differentiated thyroid carcinoma in children, adolescents, and young adults: a population-based study. J Pediatr. 2014;164(6):1481–5.  https://doi.org/10.1016/j.jpeds.2014.01.059.PubMedCrossRefGoogle Scholar
  108. 108.
    Zheng R, Peng X, Zeng H, Zhang S, Chen T, Wang H, Chen W. Incidence, mortality and survival of childhood cancer in China during 2000-2010 period: a population-based study. Cancer Lett. 2015;363(2):176–80.  https://doi.org/10.1016/j.canlet.2015.04.021.PubMedCrossRefGoogle Scholar
  109. 109.
    Tulla M, Berthold F, Graf N, Rutkowski S, von Schweinitz D, Spix C, Kaatsch P. Incidence, trends, and survival of children with embryonal tumors. Pediatrics. 2015;136(3):e623–32.  https://doi.org/10.1542/peds.2015-0224.PubMedCrossRefGoogle Scholar
  110. 110.
    Cannone GA, Lo Monaco MG, Carone S, Melcarne A, Tanzarella M, Bisceglia L, Ardizzone A, Minerba S, Quarta F, Coviello V, Gruppo di lavoro Registro tumori P. Childhood cancer incidence in Apulia region (southern Italy), 2003–2008. Epidemiol Prev. 2015;39(3):176–82.PubMedGoogle Scholar
  111. 111.
    Danysh HE, Zhang K, Mitchell LE, Scheurer ME, Lupo PJ. Maternal residential proximity to major roadways at delivery and childhood central nervous system tumors. Environ Res. 2016;146:315–22.  https://doi.org/10.1016/j.envres.2016.01.012.PubMedCrossRefGoogle Scholar
  112. 112.
    Garcia-Perez J, Lopez-Abente G, Gomez-Barroso D, Morales-Piga A, Romaguera EP, Tamayo I, Fernandez-Navarro P, Ramis R. Childhood leukemia and residential proximity to industrial and urban sites. Environ Res. 2015;140:542–53.  https://doi.org/10.1016/j.envres.2015.05.014.PubMedCrossRefGoogle Scholar
  113. 113.
    Garcia-Perez J, Morales-Piga A, Gomez J, Gomez-Barroso D, Tamayo-Uria I, Pardo Romaguera E, Fernandez-Navarro P, Lopez-Abente G, Ramis R. Association between residential proximity to environmental pollution sources and childhood renal tumors. Environ Res. 2016b;147:405–14.  https://doi.org/10.1016/j.envres.2016.02.036.PubMedCrossRefGoogle Scholar
  114. 114.
    Garcia-Perez J, Morales-Piga A, Gomez-Barroso D, Tamayo-Uria I, Pardo Romaguera E, Fernandez-Navarro P, Lopez-Abente G, Ramis R. Risk of neuroblastoma and residential proximity to industrial and urban sites: a case-control study. Environ Int. 2016a;92-93:269–75.  https://doi.org/10.1016/j.envint.2016.04.023.PubMedCrossRefGoogle Scholar
  115. 115.
    Spycher BD, Feller M, Roosli M, Ammann RA, Diezi M, Egger M, Kuehni CE. Childhood cancer and residential exposure to highways: a nationwide cohort study. Eur J Epidemiol. 2015;30(12):1263–75.  https://doi.org/10.1007/s10654-015-0091-9.PubMedCrossRefGoogle Scholar
  116. 116.
    Parodi S, Merlo DF, Ranucci A, Miligi L, Benvenuti A, Rondelli R, Magnani C, Haupt R, Group SW. Risk of neuroblastoma, maternal characteristics and perinatal exposures: the SETIL study. Cancer Epidemiol. 2014;38(6):686–94.  https://doi.org/10.1016/j.canep.2014.09.007.PubMedCrossRefGoogle Scholar
  117. 117.
    Cordier S, Monfort C, Filippini G, Preston-Martin S, Lubin F, Mueller BA, Holly EA, Peris-Bonet R, McCredie M, Choi W, Little J, Arslan A. Parental exposure to polycyclic aromatic hydrocarbons and the risk of childhood brain tumors: the SEARCH international childhood brain tumor study. Am J Epidemiol. 2004;159(12):1109–16.  https://doi.org/10.1093/aje/kwh154.PubMedCrossRefGoogle Scholar
  118. 118.
    Timms JA, Relton CL, Rankin J, Strathdee G, McKay JA. DNA methylation as a potential mediator of environmental risks in the development of childhood acute lymphoblastic leukemia. Epigenomics. 2016;8(4):519–36.  https://doi.org/10.2217/epi-2015-0011.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Vladimirova V, Mikeska T, Waha A, Soerensen N, Xu J, Reynolds PC, Pietsch T. Aberrant methylation and reduced expression of LHX9 in malignant gliomas of childhood. Neoplasia. 2009;11(7):700–11.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Castelo-Branco P, Choufani S, Mack S, Gallagher D, Zhang C, Lipman T, Zhukova N, Walker EJ, Martin D, Merino D, Wasserman JD, Elizabeth C, Alon N, Zhang L, Hovestadt V, Kool M, Jones DT, Zadeh G, Croul S, Hawkins C, Hitzler J, Wang JC, Baruchel S, Dirks PB, Malkin D, Pfister S, Taylor MD, Weksberg R, Tabori U. Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study. Lancet Oncol. 2013;14(6):534–42.  https://doi.org/10.1016/S1470-2045(13)70110-4.PubMedCrossRefGoogle Scholar
  121. 121.
    Chung YR, Schatoff E, Abdel-Wahab O. Epigenetic alterations in hematopoietic malignancies. Int J Hematol. 2012;96(4):413–27.  https://doi.org/10.1007/s12185-012-1181-z.PubMedCrossRefGoogle Scholar
  122. 122.
    Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.  https://doi.org/10.1016/j.cell.2012.06.013.PubMedCrossRefGoogle Scholar
  123. 123.
    Marsit C, Christensen B. Blood-derived DNA methylation markers of cancer risk. Adv Exp Med Biol. 2013;754:233–52.  https://doi.org/10.1007/978-1-4419-9967-2_12.PubMedCrossRefGoogle Scholar
  124. 124.
    Zheng SC, Widschwendter M, Teschendorff AE. Epigenetic drift, epigenetic clocks and cancer risk. Epigenomics. 2016;8(5):705–19.  https://doi.org/10.2217/epi-2015-0017.PubMedCrossRefGoogle Scholar
  125. 125.
    Wei J, Li F, Yang J, Liu X, Cho WC. MicroRNAs as regulators of airborne pollution-induced lung inflammation and carcinogenesis. Arch Toxicol. 2015;89(5):677–85.  https://doi.org/10.1007/s00204-015-1462-4.PubMedCrossRefGoogle Scholar
  126. 126.
    Cao Y. Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications. Front Med. 2015;9(3):261–74.  https://doi.org/10.1007/s11684-015-0406-y.PubMedCrossRefGoogle Scholar
  127. 127.
    Ding R, Jin Y, Liu X, Zhu Z, Zhang Y, Wang T, Xu Y. Characteristics of DNA methylation changes induced by traffic-related air pollution. Mutat Res. 2016;796:46–53.  https://doi.org/10.1016/j.mrgentox.2015.12.002.CrossRefGoogle Scholar
  128. 128.
    Pan HL, Wen ZS, Huang YC, Cheng X, Wang GZ, Zhou YC, Wang ZY, Guo YQ, Cao Y, Zhou GB. Down-regulation of microRNA-144 in air pollution-related lung cancer. Sci Rep. 2015;5:14331.  https://doi.org/10.1038/srep14331.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    White AJ, Chen J, Teitelbaum SL, McCullough LE, Xu X, Hee Cho Y, Conway K, Beyea J, Stellman SD, Steck SE, Mordukhovich I, Eng SM, Beth Terry M, Engel LS, Hatch M, Neugut AI, Hibshoosh H, Santella RM, Gammon MD. Sources of polycyclic aromatic hydrocarbons are associated with gene-specific promoter methylation in women with breast cancer. Environ Res. 2016;145:93–100.  https://doi.org/10.1016/j.envres.2015.11.033.PubMedCrossRefGoogle Scholar
  130. 130.
    Knox EG. Childhood cancers and atmospheric carcinogens. J Epidemiol Community Health. 2005;59(2):101–5.  https://doi.org/10.1136/jech.2004.021675.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Knox EG. Roads, railways, and childhood cancers. J Epidemiol Community Health. 2006;60(2):136–41.  https://doi.org/10.1136/jech.2005.042036.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Greaves M. Pre-natal origins of childhood leukemia. Rev Clin Exp Hematol. 2003;7(3):233–45.PubMedGoogle Scholar
  133. 133.
    Amigou A, Sermage-Faure C, Orsi L, Leverger G, Baruchel A, Bertrand Y, Nelken B, Robert A, Michel G, Margueritte G, Perel Y, Mechinaud F, Bordigoni P, Hemon D, Clavel J. Road traffic and childhood leukemia: the ESCALE study (SFCE). Environ Health Perspect. 2011;119(4):566–72.  https://doi.org/10.1289/ehp.1002429.PubMedCrossRefGoogle Scholar
  134. 134.
    Weisskopf MG, Kioumourtzoglou MA, Roberts AL. Air pollution and autism spectrum disorders: causal or confounded? Curr Environ Health Rep. 2015;2(4):430–9.  https://doi.org/10.1007/s40572-015-0073-9.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roque PJ. Neurotoxicity of traffic-related air pollution. Neurotoxicology. 2015;59:133–9.  https://doi.org/10.1016/j.neuro.2015.11.008.PubMedCrossRefGoogle Scholar
  136. 136.
    Nardone S, Elliott E. The interaction between the immune system and epigenetics in the etiology of autism spectrum disorders. Front Neurosci. 2016;10:329.  https://doi.org/10.3389/fnins.2016.00329.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Peterson BS, Rauh VA, Bansal R, Hao X, Toth Z, Nati G, Walsh K, Miller RL, Arias F, Semanek D, Perera F. Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on the development of brain white matter, cognition, and behavior in later childhood. JAMA Psychiat. 2015;72(6):531–40.  https://doi.org/10.1001/jamapsychiatry.2015.57.CrossRefGoogle Scholar
  138. 138.
    Annavarapu RN, Kathi S. Cognitive disorders in children associated with urban vehicular emissions. Environ Pollut. 2016;208(Pt A):74–8.  https://doi.org/10.1016/j.envpol.2015.09.036.PubMedCrossRefGoogle Scholar
  139. 139.
    Allen JL, Oberdorster G, Morris-Schaffer K, Wong C, Klocke C, Sobolewski M, Conrad K, Mayer-Proschel M, Cory-Slechta DA. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology. 2015;59:140–54.  https://doi.org/10.1016/j.neuro.2015.12.014.PubMedCrossRefGoogle Scholar
  140. 140.
    Raz R, Roberts AL, Lyall K, Hart JE, Just AC, Laden F, Weisskopf MG. Autism spectrum disorder and particulate matter air pollution before, during, and after pregnancy: a nested case-control analysis within the nurses’ health study II cohort. Environ Health Perspect. 2015;123(3):264–70.  https://doi.org/10.1289/ehp.1408133.PubMedGoogle Scholar
  141. 141.
    von Ehrenstein OS, Aralis H, Cockburn M, Ritz B. In utero exposure to toxic air pollutants and risk of childhood autism. Epidemiology. 2014;25(6):851–8.  https://doi.org/10.1097/EDE.0000000000000150.CrossRefGoogle Scholar
  142. 142.
    Kalkbrenner AE, Windham GC, Serre ML, Akita Y, Wang X, Hoffman K, Thayer BP, Daniels JL. Particulate matter exposure, prenatal and postnatal windows of susceptibility, and autism spectrum disorders. Epidemiology. 2015;26(1):30–42.  https://doi.org/10.1097/EDE.0000000000000173.PubMedCrossRefGoogle Scholar
  143. 143.
    Keil KP, Lein PJ. DNA methylation: a mechanism linking environmental chemical exposures to risk of autism spectrum disorders? Environ Epigenet. 2016;2(1).  https://doi.org/10.1093/eep/dvv012.
  144. 144.
    Homs A, Codina-Sola M, Rodriguez-Santiago B, Villanueva CM, Monk D, Cusco I, Perez-Jurado LA. Genetic and epigenetic methylation defects and implication of the ERMN gene in autism spectrum disorders. Transl Psychiatry. 2016;6(7):e855.  https://doi.org/10.1038/tp.2016.120.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Moulton PV, Yang W. Air pollution, oxidative stress, and Alzheimer’s disease. J Environ Public Health. 2012;2012:472751.  https://doi.org/10.1155/2012/472751.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci. 2015;9:124.  https://doi.org/10.3389/fncel.2015.00124.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Bihaqi SW, Schumacher A, Maloney B, Lahiri DK, Zawia NH. Do epigenetic pathways initiate late onset Alzheimer disease (LOAD): towards a new paradigm. Curr Alzheimer Res. 2012;9(5):574–88.PubMedCrossRefGoogle Scholar
  148. 148.
    Kwok JB. Role of epigenetics in Alzheimer’s and Parkinson’s disease. Epigenomics. 2010;2(5):671–82.  https://doi.org/10.2217/epi.10.43.PubMedCrossRefGoogle Scholar
  149. 149.
    Marques S, Outeiro TF. Epigenetics in Parkinson’s and Alzheimer’s diseases. Subcell Biochem. 2013;61:507–25.  https://doi.org/10.1007/978-94-007-4525-4_22.PubMedCrossRefGoogle Scholar
  150. 150.
    Marques SC, Oliveira CR, Pereira CM, Outeiro TF. Epigenetics in neurodegeneration: a new layer of complexity. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35(2):348–55.  https://doi.org/10.1016/j.pnpbp.2010.08.008.CrossRefGoogle Scholar
  151. 151.
    Calderon-Garciduenas L, Maronpot RR, Torres-Jardon R, Henriquez-Roldan C, Schoonhoven R, Acuna-Ayala H, Villarreal-Calderon A, Nakamura J, Fernando R, Reed W, Azzarelli B, Swenberg JA. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration. Toxicol Pathol. 2003;31(5):524–38.PubMedCrossRefGoogle Scholar
  152. 152.
    Calderon-Garciduenas L, Franco-Lira M, Torres-Jardon R, Henriquez-Roldan C, Barragan-Mejia G, Valencia-Salazar G, Gonzalez-Maciel A, Reynoso-Robles R, Villarreal-Calderon R, Reed W. Pediatric respiratory and systemic effects of chronic air pollution exposure: nose, lung, heart, and brain pathology. Toxicol Pathol. 2007;35(1):154–62.  https://doi.org/10.1080/01926230601059985.PubMedCrossRefGoogle Scholar
  153. 153.
    Calderon-Garciduenas L, Kavanaugh M, Block M, D’Angiulli A, Delgado-Chavez R, Torres-Jardon R, Gonzalez-Maciel A, Reynoso-Robles R, Osnaya N, Villarreal-Calderon R, Guo R, Hua Z, Zhu H, Perry G, Diaz P. Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults. J Alzheimers Dis. 2012;28(1):93–107.  https://doi.org/10.3233/JAD-2011-110722.PubMedGoogle Scholar
  154. 154.
    Lahiri DK, Maloney B. The “LEARn” (latent early-life associated regulation) model integrates environmental risk factors and the developmental basis of Alzheimer’s disease, and proposes remedial steps. Exp Gerontol. 2010;45(4):291–6.  https://doi.org/10.1016/j.exger.2010.01.001.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Lahiri DK, Zawia NH, Greig NH, Sambamurti K, Maloney B. Early-life events may trigger biochemical pathways for Alzheimer’s disease: the “LEARn” model. Biogerontology. 2008;9(6):375–9.  https://doi.org/10.1007/s10522-008-9162-6.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006;368(9553):2167–78.  https://doi.org/10.1016/S0140-6736(06)69665-7.PubMedCrossRefGoogle Scholar
  157. 157.
    Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(3):330–8.  https://doi.org/10.1016/S1474-4422(13)70278-3.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Calderon-Garciduenas L, Torres-Jardon R. The impact of air pollutants on the brain. JAMA Psychiat. 2015;72(6):529–30.  https://doi.org/10.1001/jamapsychiatry.2015.0192.CrossRefGoogle Scholar
  159. 159.
    Maloney B, Sambamurti K, Zawia N, Lahiri DK. Applying epigenetics to Alzheimer’s disease via the latent early-life associated regulation (LEARn) model. Curr Alzheimer Res. 2012;9(5):589–99.PubMedCrossRefGoogle Scholar
  160. 160.
    World Health Organization. Obesity and overweight. Fact sheet n.311. Geneva: WHO; 2015.Google Scholar
  161. 161.
    Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of obesity among adults and youth: United States, 2011-2014. NCHS Data Brief. 2015;219:1–8.Google Scholar
  162. 162.
    OECD. Obesity update 2014. Paris: OECD Directorate dor Employement, Labour and Social Affairs; 2014.Google Scholar
  163. 163.
    Bhupathiraju SN, Hu FB. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res. 2016;118(11):1723–35.  https://doi.org/10.1161/CIRCRESAHA.115.306825.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Zimmet PZ, Alberti KG. Epidemiology of diabetes-status of a pandemic and issues around metabolic surgery. Diabetes Care. 2016;39(6):878–83.  https://doi.org/10.2337/dc16-0273.PubMedCrossRefGoogle Scholar
  165. 165.
    Fazeli Farsani S, Souverein PC, van der Vorst MM, Knibbe CA, Herings RM, de Boer A, Mantel-Teeuwisse AK. Increasing trends in the incidence and prevalence rates of type 1 diabetes among children and adolescents in the Netherlands. Pediatr Diabetes. 2014;17(1):44–52.  https://doi.org/10.1111/pedi.12232.PubMedCrossRefGoogle Scholar
  166. 166.
    Demerath EW, Choh AC, Johnson W, Curran JE, Lee M, Bellis C, Dyer TD, Czerwinski SA, Blangero J, Towne B. The positive association of obesity variants with adulthood adiposity strengthens over an 80-year period: a gene-by-birth year interaction. Hum Hered. 2013;75(2–4):175–85.  https://doi.org/10.1159/000351742.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Kilpelainen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, Ahmad T, Mora S, Kaakinen M, Sandholt CH, Holzapfel C, Autenrieth CS, Hypponen E, Cauchi S, He M, Kutalik Z, Kumari M, Stancakova A, Meidtner K, Balkau B, Tan JT, Mangino M, Timpson NJ, Song Y, Zillikens MC, Jablonski KA, Garcia ME, Johansson S, Bragg-Gresham JL, Wu Y, van Vliet-Ostaptchouk JV, Onland-Moret NC, Zimmermann E, Rivera NV, Tanaka T, Stringham HM, Silbernagel G, Kanoni S, Feitosa MF, Snitker S, Ruiz JR, Metter J, Larrad MT, Atalay M, Hakanen M, Amin N, Cavalcanti-Proenca C, Grontved A, Hallmans G, Jansson JO, Kuusisto J, Kahonen M, Lutsey PL, Nolan JJ, Palla L, Pedersen O, Perusse L, Renstrom F, Scott RA, Shungin D, Sovio U, Tammelin TH, Ronnemaa T, Lakka TA, Uusitupa M, Rios MS, Ferrucci L, Bouchard C, Meirhaeghe A, Fu M, Walker M, Borecki IB, Dedoussis GV, Fritsche A, Ohlsson C, Boehnke M, Bandinelli S, van Duijn CM, Ebrahim S, Lawlor DA, Gudnason V, Harris TB, Sorensen TI, Mohlke KL, Hofman A, Uitterlinden AG, Tuomilehto J, Lehtimaki T, Raitakari O, Isomaa B, Njolstad PR, Florez JC, Liu S, Ness A, Spector TD, Tai ES, Froguel P, Boeing H, Laakso M, Marmot M, Bergmann S, Power C, Khaw KT, Chasman D, Ridker P, Hansen T, Monda KL, Illig T, Jarvelin MR, Wareham NJ, Hu FB, Groop LC, Orho-Melander M, Ekelund U, Franks PW, Loos RJ. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med. 2011;8(11):e1001116.  https://doi.org/10.1371/journal.pmed.1001116.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DI, Roseboom TJ. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG. 2008;115(10):1243–9.  https://doi.org/10.1111/j.1471-0528.2008.01822.x.PubMedCrossRefGoogle Scholar
  169. 169.
    Shi H, Su B. Molecular adaptation of modern human populations. Int J Evol Biol. 2011;2011:484769.  https://doi.org/10.4061/2011/484769.CrossRefGoogle Scholar
  170. 170.
    Stanner SA, Yudkin JS. Fetal programming and the Leningrad siege study. Twin Res. 2001;4(5):287–92.  https://doi.org/10.1375/1369052012498.PubMedCrossRefGoogle Scholar
  171. 171.
    Veerman JL. On the futility of screening for genes that make you fat. PLoS Med. 2011;8(11):e1001114.  https://doi.org/10.1371/journal.pmed.1001114.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Sarr O, Yang K, Regnault TR. In utero programming of later adiposity: the role of fetal growth restriction. J Pregnancy. 2012;2012:134758.  https://doi.org/10.1155/2012/134758.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Ravelli AC, van Der Meulen JH, Osmond C, Barker DJ, Bleker OP. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr. 1999;70(5):811–6.PubMedCrossRefGoogle Scholar
  174. 174.
    Vafeiadi M, Georgiou V, Chalkiadaki G, Rantakokko P, Kiviranta H, Karachaliou M, Fthenou E, Venihaki M, Sarri K, Vassilaki M, Kyrtopoulos SA, Oken E, Kogevinas M, Chatzi L. Association of prenatal exposure to persistent organic pollutants with obesity and cardiometabolic traits in early childhood: the rhea mother-child cohort (Crete, Greece). Environ Health Perspect. 2015;123(10):1015–21.  https://doi.org/10.1289/ehp.1409062.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Aslibekyan S, Demerath EW, Mendelson M, Zhi D, Guan W, Liang L, Sha J, Pankow JS, Liu C, Irvin MR, Fornage M, Hidalgo B, Lin LA, Thibeault KS, Bressler J, Tsai MY, Grove ML, Hopkins PN, Boerwinkle E, Borecki IB, Ordovas JM, Levy D, Tiwari HK, Absher DM, Arnett DK. Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity. 2015;23(7):1493–501.  https://doi.org/10.1002/oby.21111.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Pietilainen KH, Ismail K, Jarvinen E, Heinonen S, Tummers M, Bollepalli S, Lyle R, Muniandy M, Moilanen E, Hakkarainen A, Lundbom J, Lundbom N, Rissanen A, Kaprio J, Ollikainen M. DNA methylation and gene expression patterns in adipose tissue differ significantly within young adult monozygotic BMI-discordant twin pairs. Int J Obes. 2016;40(4):654–61.  https://doi.org/10.1038/ijo.2015.221.CrossRefGoogle Scholar
  177. 177.
    Thayer KA, Heindel JJ, Bucher JR, Gallo MA. Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ Health Perspect. 2012;120(6):779–89.  https://doi.org/10.1289/ehp.1104597.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. Executive summary to EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):593–602.  https://doi.org/10.1210/er.2015-1093.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Janesick AS, Blumberg B. Obesogens: an emerging threat to public health. Am J Obstet Gynecol. 2016;214(5):559–65.  https://doi.org/10.1016/j.ajog.2016.01.182.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Janesick A, Blumberg B. Obesogens, stem cells and the developmental programming of obesity. Int J Androl. 2012;35(3):437–48.  https://doi.org/10.1111/j.1365-2605.2012.01247.x.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Stel J, Legler J. The role of epigenetics in the latent effects of early life exposure to obesogenic endocrine disrupting chemicals. Endocrinology. 2015;156(10):3466–72.  https://doi.org/10.1210/en.2015-1434.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Rajesh P, Balasubramanian K. Phthalate exposure in utero causes epigenetic changes and impairs insulin signalling. J Endocrinol. 2014;223(1):47–66.  https://doi.org/10.1530/JOE-14-0111.PubMedCrossRefGoogle Scholar
  183. 183.
    Tabb MM, Blumberg B. New modes of action for endocrine-disrupting chemicals. Mol Endocrinol. 2006;20(3):475–82.  https://doi.org/10.1210/me.2004-0513.PubMedCrossRefGoogle Scholar
  184. 184.
    Biemann R, Fischer B, Navarrete Santos A. Adipogenic effects of a combination of the endocrine-disrupting compounds bisphenol a, diethylhexylphthalate, and tributyltin. Obes Facts. 2014;7(1):48–56.  https://doi.org/10.1159/000358913.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Blumberg B. Obesogens, stem cells and the maternal programming of obesity. J Dev Orig Health Dis. 2011;2(1):3–8.  https://doi.org/10.1017/S2040174410000589.PubMedCrossRefGoogle Scholar
  186. 186.
    Janesick A, Blumberg B. Endocrine disrupting chemicals and the developmental programming of adipogenesis and obesity. Birth Defects Res Part C. 2011;93(1):34–50.  https://doi.org/10.1002/bdrc.20197.CrossRefGoogle Scholar
  187. 187.
    Thiering E, Cyrys J, Kratzsch J, Meisinger C, Hoffmann B, Berdel D, von Berg A, Koletzko S, Bauer CP, Heinrich J. Long-term exposure to traffic-related air pollution and insulin resistance in children: results from the GINIplus and LISAplus birth cohorts. Diabetologia. 2013;56(8):1696–704.  https://doi.org/10.1007/s00125-013-2925-x.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Kelishadi R, Mirghaffari N, Poursafa P, Gidding SS. Lifestyle and environmental factors associated with inflammation, oxidative stress and insulin resistance in children. Atherosclerosis. 2009;203(1):311–9.  https://doi.org/10.1016/j.atherosclerosis.2008.06.022.PubMedCrossRefGoogle Scholar
  189. 189.
    Kramer U, Herder C, Sugiri D, Strassburger K, Schikowski T, Ranft U, Rathmann W. Traffic-related air pollution and incident type 2 diabetes: results from the SALIA cohort study. Environ Health Perspect. 2010;118(9):1273–9.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Di Ciaula A. Type I diabetes in paediatric age in Apulia (Italy): incidence and associations with outdoor air pollutants. Diabetes Res Clin Pract. 2016;111:36–43.  https://doi.org/10.1016/j.diabres.2015.10.016.PubMedCrossRefGoogle Scholar
  191. 191.
    Lavigne E, Ashley-Martin J, Dodds L, Arbuckle TE, Hystad P, Johnson M, Crouse DL, Ettinger AS, Shapiro GD, Fisher M, Morisset AS, Taback S, Bouchard MF, Sun L, Monnier P, Dallaire R, Fraser WD. Air pollution exposure during pregnancy and fetal markers of metabolic function: the MIREC study. Am J Epidemiol. 2016;183(9):842–51.  https://doi.org/10.1093/aje/kwv256.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Malmqvist E, Larsson HE, Jonsson I, Rignell-Hydbom A, Ivarsson SA, Tinnerberg H, Stroh E, Rittner R, Jakobsson K, Swietlicki E, Rylander L. Maternal exposure to air pollution and type 1 diabetes–accounting for genetic factors. Environ Res. 2015;140:268–74.  https://doi.org/10.1016/j.envres.2015.03.024.PubMedCrossRefGoogle Scholar
  193. 193.
    Ke X, Cortina-Borja M, Silva BC, Lowe R, Rakyan V, Balding D. Integrated analysis of genome-wide genetic and epigenetic association data for identification of disease mechanisms. Epigenetics. 2013;8(11):1236–44.PubMedCrossRefGoogle Scholar
  194. 194.
    Stefan M, Zhang W, Concepcion E, Yi Z, Tomer Y. DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J Autoimmun. 2014;50:33–7.  https://doi.org/10.1016/j.jaut.2013.10.001.PubMedCrossRefGoogle Scholar
  195. 195.
    Miao F, Chen Z, Zhang L, Liu Z, Wu X, Yuan YC, Natarajan R. Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. J Biol Chem. 2012;287(20):16335–45.  https://doi.org/10.1074/jbc.M111.330373.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Hezova R, Slaby O, Faltejskova P, Mikulkova Z, Buresova I, Raja KR, Hodek J, Ovesna J, Michalek J. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol. 2010;260(2):70–4.  https://doi.org/10.1016/j.cellimm.2009.10.012.PubMedCrossRefGoogle Scholar
  197. 197.
    Nielsen LB, Wang C, Sorensen K, Bang-Berthelsen CH, Hansen L, Andersen ML, Hougaard P, Juul A, Zhang CY, Pociot F, Mortensen HB. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res. 2012;2012:896362.  https://doi.org/10.1155/2012/896362.PubMedPubMedCentralGoogle Scholar
  198. 198.
    Stefan M, Zhang W, Concepcion E, Yi Z, Tomer Y. DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J Autoimmun. 2013;50:33–7.  https://doi.org/10.1016/j.jaut.2013.10.001.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.European Cancer and Environment Research InstituteBruxellesBelgium
  2. 2.ISDE (International Society of Doctors for Environment)BaselSwitzerland
  3. 3.Division of Internal MedicineHospital of Bisceglie (ASL BAT)BisceglieItaly
  4. 4.ISDE Italia (International Society of Doctors for Environment)ArezzoItaly

Personalised recommendations