Skip to main content

MR Imaging in Prostate Tumor Volume Assessment: How Accurate?

  • Chapter
  • First Online:
Active Surveillance for Localized Prostate Cancer

Part of the book series: Current Clinical Urology ((CCU))

Abstract

The current definition of clinically significant prostate cancer includes an indirect measure of the volume of prostate cancer in addition to Gleason score based on biopsy findings. This biopsy-based tumor volume measure lacks accuracy, and therefore assessment by MRI of prostate cancer tumor volume could have a beneficial role for men on active surveillance. Despite the advances in interpretation and reporting on prostate cancer identified on MRI, limited evidence is available on tumor volume measurements on MRI. Although the PI-RADS version 2 has made some effort to define lesion measurements, many factors may influence these measurements. The robustness of tumor size or tumor volume assessment is reduced especially in small lesions visible on MRI. Furthermore, the overlap of benign and malignant tissue may hamper the accuracy of volume measurements. Even more, the heterogeneity of the prostate cancer, as also shown by the different Gleason patterns within the tumor, may demonstrate differences in tumor visualization on MRI. Moreover, differences in MRI hardware, software, imaging protocols, the chosen sequence, and the chosen slice may each have some effect on the robustness of tumor volume measurements.

This review discusses the applicability in clinical setting of MRI tumor volume assessment. Based on comparison between preoperative MRI-derived and histology-confirmed tumor volumes on prostatectomy specimen, the MRI inaccurately estimates the index tumor volume, irrespective of actual tumor size, Gleason grade, and MRI suspicion score. Caution is warranted for present clinical application of MRI tumor volume measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klotz L. Active surveillance for prostate cancer: patient selection and management. Curr Oncol. 2010;17(Suppl 2):S11–7.

    PubMed  PubMed Central  Google Scholar 

  2. Epstein JI, Walsh PC, Carmichael M, Brendler CB. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA. 1994;271:368–74.

    Article  CAS  PubMed  Google Scholar 

  3. Bangma CH, Bul M, van der Kwast TH, et al. Active surveillance for low-risk prostate cancer. Crit Rev Oncol Hematol. 2013;85:295–302.

    Article  PubMed  Google Scholar 

  4. Bruinsma SM, Bangma CH, Carroll PR, et al. Active surveillance for prostate cancer: a narrative review of clinical guidelines. Nat Rev Urol. 2016;13:151–67.

    Article  CAS  PubMed  Google Scholar 

  5. van der Kwast TH, Amin MB, Billis A, et al. International Society of Urological Pathology (ISUP) consensus conference on handling and staging of radical prostatectomy specimens. Working group 2: T2 substaging and prostate cancer volume. Mod Pathol. 2011;24:16–25.

    Article  PubMed  Google Scholar 

  6. Van der Kwast TH, Roobol MJ. Defining the threshold for significant versus insignificant prostate cancer. Nat Rev Urol. 2013;10:473–82.

    Article  PubMed  Google Scholar 

  7. Wolters T, Roobol MJ, van Leeuwen PJ, et al. A critical analysis of the tumor volume threshold for clinically insignificant prostate cancer using a data set of a randomized screening trial. J Urol. 2011;185:121–5.

    Article  PubMed  Google Scholar 

  8. Bul M, Zhu X, Valdagni R, et al. Active surveillance for low-risk prostate cancer worldwide: the PRIAS study. Eur Urol. 2013;63:597–603.

    Article  PubMed  Google Scholar 

  9. Barentsz JO, Richenberg J, Clements R, et al. ESUR prostate MR guidelines 2012. Eur Urol. 2012;22:746–57.

    Google Scholar 

  10. Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS prostate imaging - reporting and data system: 2015, version 2. Eur Urol. 2016;69:16–40.

    Article  PubMed  Google Scholar 

  11. Rosenkrantz AB, Babb JS, Taneja SS, Ream JM. Proposed adjustments to PI-RADS version 2 decision rules: impact on prostate cancer detection. Radiology. 2017;283(1):119–29.

    Article  PubMed  Google Scholar 

  12. Moore CM, Giganti F, Albertsen P, et al. Reporting magnetic resonance imaging in men on active surveillance for prostate cancer: the PRECISE recommendations-a report of a European School of Oncology Task Force. Eur Urol. 2017;71(4):648–55.

    Article  PubMed  Google Scholar 

  13. Liu W, Laitinen S, Khan S, et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med. 2009;15:559–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bott SR, Ahmed HU, Hindley RG, et al. The index lesion and focal therapy: an analysis of the pathological characteristics of prostate cancer. BJU Int. 2010;106:1607–11.

    Article  PubMed  Google Scholar 

  15. Karavitakis M, Winkler M, Abel P, et al. Histological characteristics of the index lesion in whole-mount radical prostatectomy specimens: implications for focal therapy. Prostate Cancer Prostatic Dis. 2011;14:46–52.

    Article  CAS  PubMed  Google Scholar 

  16. Rosenkrantz AB, Deng FM, Kim S, et al. Prostate cancer: multiparametric MRI for index lesion localization--a multiple-reader study. Am J Roentgenol. 2012;199:830–7.

    Article  Google Scholar 

  17. Turkbey B, Mani H, Aras O, et al. Correlation of magnetic resonance imaging tumor volume with histopathology. J Urol. 2012;188:1157–63.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Baco E, Rud E, Vlatkovic L, et al. Predictive value of magnetic resonance imaging determined tumor contact length for extracapsular extension of prostate cancer. J Urol. 2015;193:466–72.

    Article  PubMed  Google Scholar 

  19. Egevad L, Srigley JR, Delahunt B. International Society of Urological Pathology (ISUP) consensus conference on handling and staging of radical prostatectomy specimens: rationale and organization. Mod Pathol. 2011;24:1–5.

    Article  PubMed  Google Scholar 

  20. Wolters T, Roobol MJ, van Leeuwen PJ, et al. Should pathologists routinely report prostate tumour volume? The prognostic value of tumour volume in prostate cancer. Eur Urol. 2010;57:821–9.

    Article  PubMed  Google Scholar 

  21. Fukuhara H, Kume H, Suzuki M, et al. Maximum tumor diameter: a simple independent predictor for biochemical recurrence after radical prostatectomy. Prostate Cancer Prostatic Dis. 2010;13:244–7.

    Article  CAS  PubMed  Google Scholar 

  22. Stamey TA, McNeal JE, Yemoto CM, et al. Biological determinants of cancer progression in men with prostate cancer. JAMA. 1999;281:1395–400.

    Article  CAS  PubMed  Google Scholar 

  23. Partin AW, Kattan MW, Subong EN, et al. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA. 1997;277:1445–51.

    Article  CAS  PubMed  Google Scholar 

  24. Nelson BA, Shappell SB, Chang SS, et al. Tumour volume is an independent predictor of prostate-specific antigen recurrence in patients undergoing radical prostatectomy for clinically localized prostate cancer. BJU Int. 2006;97:1169–72.

    Article  PubMed  Google Scholar 

  25. Wheeler TM, Dillioglugil O, Kattan MW, et al. Clinical and pathological significance of the level and extent of capsular invasion in clinical stage T1-2 prostate cancer. Hum Pathol. 1998;29:856–62.

    Article  CAS  PubMed  Google Scholar 

  26. Kench JG, Clouston DR, Delprado W, et al. Prognostic factors in prostate cancer. Key elements in structured histopathology reporting of radical prostatectomy specimens. Pathology. 2011;43:410–9.

    Article  PubMed  Google Scholar 

  27. Sherwin JC, Mirmilstein G, Pedersen J, et al. Tumor volume in radical prostatectomy specimens assessed by digital image analysis software correlates with other prognostic factors. J Urol. 2010;183:1808–14.

    Article  PubMed  Google Scholar 

  28. Chen ME, Johnston D, Reyes AO, et al. A streamlined three-dimensional volume estimation method accurately classifies prostate tumors by volume. Am J Surg Pathol. 2003;7:1291–301.

    Article  Google Scholar 

  29. Noguchi M, Stamey TA, McNeal JE, Yemoto CE. Assessment of morphometric measurements of prostate carcinoma volume. Cancer. 2000;89:1056–64.

    Article  CAS  PubMed  Google Scholar 

  30. Renshaw AA, Chang H, D'Amico AV. Estimation of tumor volume in radical prostatectomy specimens in routine clinical practice. Am J Clin Pathol. 1997;107:704–8.

    Article  CAS  PubMed  Google Scholar 

  31. Perera M, Lawrentschuk N, Bolton D, Clouston D. Comparison of contemporary methods for estimating prostate tumour volume in pathological specimens. BJU Int. 2014;13(Suppl 2):29–34.

    Article  Google Scholar 

  32. Langer DL, van der Kwast TH, Evans AJ, et al. Prostate tissue composition and MR measurements: investigating the relationships between ADC, T2, K(trans), v(e), and corresponding histologic features. Radiol. 2010;255:485–94.

    Article  Google Scholar 

  33. Langer DL, Van Der Kwast TH, Evans AJ, et al. Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2-sparse versus dense cancers. Radiol. 2008;249:900–8.

    Article  Google Scholar 

  34. Gibbs P, Liney GP, Pickles MD, et al. Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla. Invest Radiol. 2009;44:572–6.

    Article  PubMed  Google Scholar 

  35. Wang XZ, Wang B, Gao ZQ, et al. Diffusion-weighted imaging of prostate cancer: correlation between apparent diffusion coefficient values and tumor proliferation. J Magn Reson Imaging JMRI. 2009;29:1360–6.

    Article  PubMed  Google Scholar 

  36. Ren J, Huan Y, Wang H, et al. Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma: correlation with angiogenesis. Clin Radiol. 2008;63:153–9.

    Article  CAS  PubMed  Google Scholar 

  37. Quint LE, Van Erp JS, Bland PH, et al. Prostate cancer: correlation of MR images with tissue optical density at pathologic examination. Radiology. 1991;179:837–42.

    Article  CAS  PubMed  Google Scholar 

  38. Jager GJ, Ruijter ET, van de Kaa CA, et al. Local staging of prostate cancer with endorectal MR imaging: correlation with histopathology. Am J Roentgenol. 1996;166:845–52.

    Article  CAS  Google Scholar 

  39. Cheikh AB, Girouin N, Colombel M, et al. Evaluation of T2-weighted and dynamic contrast-enhanced MRI in localizing prostate cancer before repeat biopsy. Eur Radiol. 2009;19:770–8.

    Article  PubMed  Google Scholar 

  40. Shukla-Dave A, Hricak H, Eberhardt SC, et al. Chronic prostatitis: MR imaging and 1H MR spectroscopic imaging findings--initial observations. Radiology. 2004;231:717–24.

    Article  PubMed  Google Scholar 

  41. Sommer FG, Nghiem HV, Herfkens R, et al. Determining the volume of prostatic carcinoma: value of MR imaging with an external-array coil. Am J Roentgenol. 1993;161:81–6.

    Article  CAS  Google Scholar 

  42. Vargas HA, Hötker AM, Goldman DA, et al. Updated prostate imaging reporting and data system (PIRADS v2) recommendations for the detection of clinically significant prostate cancer using multiparametric MRI: critical evaluation using whole-mount pathology as standard of reference. Eur Radiol. 2016;26:1606–12.

    Article  CAS  PubMed  Google Scholar 

  43. Vargas H, Akin O, Shukla-Dave A, et al. Performance characteristics of MR imaging in the evaluation of clinically low-risk prostate cancer: a prospective study. Radiology. 2012;265:478–87.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brawley OW. Trends in prostate cancer in the United States. J Natl Cancer Inst Monogr. 2012;2012:152–6.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bratan F, Niaf E, Melodelima C, et al. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol. 2013;23:2019–29.

    Article  PubMed  Google Scholar 

  46. Baco E, Ukimura O, Rud E, et al. Magnetic resonance imaging-transrectal ultrasound image-fusion biopsies accurately characterize the index tumor: correlation with step-sectioned radical prostatectomy specimens in 135 patients. Eur Urol. 2015;67:787–94.

    Article  PubMed  Google Scholar 

  47. Cornud F, Khoury G, Bouazza N, et al. Tumor target volume for focal therapy of prostate cancer – does multiparametric magnetic resonance imaging allow for a reliable estimation? J Urol. 2014;191:1272–9.

    Article  CAS  PubMed  Google Scholar 

  48. Rosenkrantz AB, Mendrinos S, Babb JS, Taneja SS. Prostate cancer foci detected on multiparametric magnetic resonance imaging are histologically distinct from those not detected. J Urol. 2012;187:2032–8.

    Article  PubMed  Google Scholar 

  49. Matsugasumi T, Baco E, Palmer S, et al. Prostate cancer volume estimation by combining magnetic resonance imaging and targeted biopsy proven cancer core length: correlation with cancer volume. J Urol. 2015;194:957–65.

    Article  PubMed  Google Scholar 

  50. Mazaheri Y, Hricak H, Fine SW, et al. Prostate tumor volume measurement with combined T2-weighted imaging and diffusion-weighted MR: correlation with pathologic tumor volume. Radiol. 2009;252:449–57.

    Article  Google Scholar 

  51. Le Nobin J, Orczyk C, Deng FM, et al. Prostate tumour volumes: evaluation of the agreement between magnetic resonance imaging and histology using novel co-registration software. BJU Int. 2014;114:E105–12.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rud E, Klotz D, Rennesund K, et al. Detection of the index tumour and tumour volume in prostate cancer using T2-weighted and diffusion-weighted magnetic resonance imaging (MRI) alone. BJU Int. 2014;114:E32–42.

    Article  PubMed  Google Scholar 

  53. Isebaert S, Van Den Bergh L, Haustermans K, et al. Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J Magn Reson Imaging. 2013;37:1392–401.

    Article  PubMed  Google Scholar 

  54. Delongchamps NB, Rouanne M, Flam T, et al. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int. 2011;107:1411–8.

    Article  PubMed  Google Scholar 

  55. Okoro C, George AK, Siddiqui MM, et al. Magnetic resonance imaging/transrectal ultrasonography fusion prostate biopsy significantly outperforms systematic 12-core biopsy for prediction of total magnetic resonance imaging tumor volume in active surveillance patients. J Endourol. 2015;29:1115–21.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schoots IG, Petrides N, Giganti F, et al. Magnetic resonance imaging in active surveillance of prostate cancer: a systematic review. Eur Urol. 2015;67:627–36.

    Article  PubMed  Google Scholar 

  57. Dianat SS, Carter HB, Pienta KJ, et al. Magnetic resonance-invisible versus magnetic resonance-visible prostate cancer in active surveillance: a preliminary report on disease outcomes. Urology. 2015;85:147–53.

    Article  PubMed  Google Scholar 

  58. Rais-Bahrami S, Türkbey B, Rastinehad AR, et al. Natural history of small index lesions suspicious for prostate cancer on multiparametric MRI: recommendations for interval imaging follow-up. Diagn Interv Radiol. 2014;20:293–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Walton Diaz A, Hoang AN, Turkbey B, et al. Can magnetic resonance-ultrasound fusion biopsy improve cancer detection in enlarged prostates? J Urol. 2013;190:2020–5.

    Article  PubMed  Google Scholar 

  60. Satasivam P, Poon BY, Ehdaie B, et al. Can confirmatory biopsy be omitted in patients with prostate cancer favorable diagnostic features on active surveillance? J Urol. 2016;195:74–9.

    Article  PubMed  Google Scholar 

  61. Tran GN, Leapman MS, Nguyen HG et al. Magnetic resonance imaging-ultrasound fusion biopsy during prostate cancer active surveillance. Eur Urol. 2016. pii: S0302–2838(16)30490–0.

    Google Scholar 

  62. Nassiri N, Margolis DJ, Natarajan S, et al. Targeted biopsy to detect Gleason score upgrading during active surveillance for men with low- vs. intermediate-risk prostate cancer. J Urol. 2017;197(3 Pt 1):632–9.

    Article  PubMed  Google Scholar 

  63. Henderson DR, DeSouza NM, Thomas K, et al. Nine-year follow-up for a study of diffusion-weighted MRI in a prospective active surveillance cohort for prostate cancer. J Clin Oncol. 2015;33

    Google Scholar 

  64. Hansen NL, Barrett T, Koo B, et al. The influence of prostate-specific antigen density on positive and negative predictive values of multiparametric magnetic resonance imaging to detect Gleason score 7-10 prostate cancer in a repeat biopsy setting. BJU Int. 2017;119(5):724–30.

    Article  CAS  PubMed  Google Scholar 

  65. van As NJ, de Souza NM, Riches SF, et al. A study of diffusion-weighted magnetic resonance imaging in men with untreated localised prostate cancer on active surveillance. Eur Urol. 2009;56:981–7.

    Article  PubMed  Google Scholar 

  66. The National Institute for Health and Clinical Excellence (NICE) Guidelines. Prostate cancer: diagnosis and treatment. 2014. http://www.nice.org.uk/guidance/cg175.

  67. Morash C, Tey R, Agbassi C, et al. Active surveillance for the management of localized prostate cancer: guideline recommendations. Can Urol Assoc J. 2015;9:171–8.

    Article  PubMed  PubMed Central  Google Scholar 

  68. American Urological Association (AUA). Guideline for the management of clinically localized prostate cancer: 2007 update. 2007. [online], http://www.auanet.org/common/pdf/education/clinical-guidance/Prostate-Cancer.pdf.

  69. Downes MR, Gibson E, Sykes J, et al. Determination of the association between T2-weighted MRI and Gleason sub-pattern: a proof of principle study. Acad Radiol. 2016;23:1412–21.

    Article  PubMed  Google Scholar 

  70. Trudel D, Downes MR, Sykes J, et al. Prognostic impact of intraductal carcinoma and large cribriform carcinoma architecture after prostatectomy in a contemporary cohort. Eur J Cancer. 2014;50:1610–6.

    Article  PubMed  Google Scholar 

  71. Dong F, Yang P, Wang C, et al. Architectural heterogeneity and cribriform pattern predict adverse clinical outcome for Gleason grade 4 prostatic adenocarcinoma. Am J Surg Pathol. 2013;37:1855–61.

    Article  PubMed  Google Scholar 

  72. Kryvenko ON, Gupta NS, Virani N, et al. Gleason score 7 adenocarcinoma of the prostate with lymph node metastases: analysis of 184 radical prostatectomy specimens. Arch Pathol Lab Med. 2013;137:610–7.

    Article  PubMed  Google Scholar 

  73. Kweldam CF, Kummerlin IP, Nieboer D, et al. Prostate cancer outcomes of men with biopsy Gleason score 6 and 7 without cribriform or intraductal carcinoma. Eur J Cancer. 2016;66:26–33.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo G. Schoots .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Schoots, I.G., van der Kwast, T.H. (2018). MR Imaging in Prostate Tumor Volume Assessment: How Accurate?. In: Klotz, L. (eds) Active Surveillance for Localized Prostate Cancer. Current Clinical Urology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-62710-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62710-6_10

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-62709-0

  • Online ISBN: 978-3-319-62710-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics