Improving Human Motion Identification Using Motion Dependent Classification

  • Evangelia PippaEmail author
  • Iosif Mporas
  • Vasileios Megalooikonomou
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 736)


In this article, we present a new methodology for human motion identification based on motion dependent binary classifiers that afterwards fuse their decisions to identify an Activity of Daily Living (ADL). Temporal and spectral features extracted from the sensor signals (accelerometer and gyroscope) and concatenated to a single feature vector are used to train motion dependent binary classification models. Each individual model is capable to recognize one motion versus all the others. Afterwards the decisions are combined by a fusion function using as weights the sensitivity values derived from the evaluation of each motion dependent classifier on the provided training set. The proposed methodology was evaluated using SVMs for the motion dependent classifiers and is compared against the common multiclass classification approach optimized using either feature selection or subject dependent classification. The classification accuracy of the proposed methodology reaches 99% offering competitive performance comparing to the other approaches.


Human motion identification ADLs Classification Fusion Feature extraction Accelerometers Gyroscopes 



The research reported in the present paper was partially supported by the FrailSafe Project (H2020- PHC-21-2015-690140) “Sensing and predictive treatment of frailty and associated co-morbidities using advanced personalized models and advanced interventions”, co-funded by the European Commission under the Horizon 2020 research and innovation program.


  1. 1.
    Morley, J.E., et al.: Frailty consensus: a call to action. J. Am. Med. Directors Assoc. 14, 392–397 (2013)CrossRefGoogle Scholar
  2. 2.
    Chen, X., Mao, G., Leng, S.X.: Frailty syndrome: an overview. Clin. Interv. Aging 9, 433–441 (2014)Google Scholar
  3. 3.
    Abellan van Kan, G., et al.: The I.A.N.A Task Force on frailty assessment of older people in clinical practice. J. Nutr. Health Aging 12, 29–37 (2008)CrossRefGoogle Scholar
  4. 4.
    Mitnitski, A.B., Graham, J.E., Mogilner, A.J., Rockwood, K.: Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatr. 2, 1 (2002)CrossRefGoogle Scholar
  5. 5.
    Morley, J.E., Haren, M.T., Rolland, Y., Kim, M.J.: Frailty. Med. Clin. North Am. 90, 837–847 (2006)CrossRefGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    Mporas, I., Tsirka, V., Zacharaki, E.I., Koutroumanidis, M., Richardson, M., Megalooikonomou, V.: Seizure detection using EEG and ECG signals for computer-based monitoring, analysis and management of epileptic patients. Expert Syst. Appl. 42, 3227–3233 (2015)CrossRefGoogle Scholar
  10. 10.
  11. 11.
  12. 12.
  13. 13.
  14. 14.
  15. 15.
    Jia, Y.: Diatetic and exercise therapy against diabetes mellitus. In: 2nd International Conference on Intelligent Networks and Intelligent Systems, pp. 693–696 (2009)Google Scholar
  16. 16.
    Khan, A., Lee, Y., Lee, S.Y., Kim, T.: Triaxial accel-erometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer. IEEE Trans. Inf Technol. Biomed. 14, 1166–1172 (2010)CrossRefGoogle Scholar
  17. 17.
    Mantyjarvi, J., Himberg, J., Seppanen, T.: Recognizing human motion with multiple acceleration sensors. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 747–752 (2001)Google Scholar
  18. 18.
    Sekine, M., Tamura, T., Akay, M., Fujimoto, T., Togawa, T., Fukui, Y.: Discrimination of walking patterns using wavelet-based fractal analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 10, 188–196 (2002)CrossRefGoogle Scholar
  19. 19.
    Ermes, M., Parkka, J., Mantyjarvi, J., Korhonen, I.: Frequent bit pattern mining over tri-axial accelerometer data streams for recognizing human activities and detecting fall. Procedia Comput. Sci. 19, 56–63 (2013)CrossRefGoogle Scholar
  20. 20.
    Bernecker, T., Graf, F., Kriegel, H., Moennig, C.: Activity recognition on 3D accelerometer data. Technical Report (2012)Google Scholar
  21. 21.
    Karantonis, D.M., Narayanan, M.R., Mathie, M., Lovell, N.H., Celler, B.G.: Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Trans. Inf Technol. Biomed. 10, 156–167 (2006)CrossRefGoogle Scholar
  22. 22.
    Zhang, M., Sawchuk, A.: A feature selection-based framework for human activity recognition using wearable multimodal sensors. In: Proceedings of the 6th International Conference on Body Area Networks, pp. 92–98 (2011)Google Scholar
  23. 23.
    Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. Am. Assoc. Artif. Intell. 5, 1541–1546 (2005)Google Scholar
  24. 24.
    Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 437–442 (2013)Google Scholar
  25. 25.
    Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, Jorge L.: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: Bravo, J., Hervás, R., Rodríguez, M. (eds.) IWAAL 2012. LNCS, vol. 7657, pp. 216–223. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-35395-6_30 CrossRefGoogle Scholar
  26. 26.
    Reyes-Ortiz, J.L., Ghio, A., Parra, X., Anguita, D., Cabestany, J., Catala, A.: Human activity and motion disorder recognition: towards smarter interactive cognitive environments. In: 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 403–412 (2013)Google Scholar
  27. 27.
    FrailSafe project:
  28. 28.
    Pippa, E., Mporas, I., Megalooikonomou, V.: Feature selection evaluation for light human motion identification in frailty monitoring system. In: 2nd International Conference on Information and Communication Technologies for Ageing Well and e-Health (ICT4AWE) (2016)Google Scholar
  29. 29.
    Kononenko, I.: Estimating attributes: analysis and extension of RELIEF. Mach. Learn. 784, 171–182 (2005)Google Scholar
  30. 30.
    Kira, K., Rendell, L.A.: A practical approach to feature selection. In: Proceedings of 9th International Conference on Machine Learning, pp. 249–256 (1992)Google Scholar
  31. 31.
    Dietterich, T.G.: Machine learning research: four current directions. Artif. Intell. Mag. 18, 97–136 (1997)Google Scholar
  32. 32.
    Sun, Y., Wu, D.: A RELIEF based feature extraction algorithm. In: Proceedings of SIAM International Conference on Data Mining, pp. 188–195 (2008)Google Scholar
  33. 33.
    Sun, Y., Li, J.: Iterative RELIEF for feature weighting. In: Proceedings of 21st International Conference on Machine Learning, pp. 913–920 (2006)Google Scholar
  34. 34.
    Kononenko, I., Simec, E., Robnik-Sikonja, M.: Overcoming the myopic of inductive learning algorithms with RELIEF-F. Appl. Intell. 7, 39–55 (1997)CrossRefGoogle Scholar
  35. 35.
    Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to Platt’s SMO algorithm for SVM classifier design. Neural Comput. 13, 637–649 (2001)CrossRefzbMATHGoogle Scholar
  36. 36.
    Platt, J.: Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods - Support Vector Learning, pp. 185–208 (1998)Google Scholar
  37. 37.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11, 10–18 (2009)CrossRefGoogle Scholar
  38. 38.
    Reiss, A., Hendeby, G., Stricker, D.: A competitive approach for human activity recognition on smartphones. In: European Symposium on Artificial Neural Networks. Computational Intelligence and Machine Learning, pp. 455–460 (2013)Google Scholar
  39. 39.
    Romera-Paredes, B., Aung, H., Bianchi-Berthouze, N.: A one-vs-one classifier ensemble with majority voting for activity recognition. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 443–448 (2013)Google Scholar
  40. 40.
    Kastner, M., Strickert, M., Villmann, T.: A sparse kernelized matrix learning vector quantization model for human activity recognition. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 449–454 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Evangelia Pippa
    • 1
    Email author
  • Iosif Mporas
    • 2
  • Vasileios Megalooikonomou
    • 1
  1. 1.Multidimentional Data Analysis and Knowledge Discovery Laboratory, Department of Computer Engineering and InformaticsUniversity of PatrasRion-PatrasGreece
  2. 2.School of Engineering and TechnologyUniversity of HertfordshireHatfieldUK

Personalised recommendations