Yeasts Associated with Decomposing Plant Material and Rotting Wood

  • Raquel M. Cadete
  • Mariana R. Lopes
  • Carlos A. RosaEmail author


Yeasts play different roles in the decomposition of plant materials, actively participating as producers of hydrolytic enzymes or as transient fungi that use products released during decomposition by other organisms such as fungi and bacteria. Yeasts able to assimilate lignocellulose-related sugars are usually found in tree bark, leaf litter, and rotting wood, which are suitable habitats for these organisms. Many yeast species that are found in live or decaying plant parts are associated with insects that also use these habitats as feeding or breeding sites. Among the major clades of yeasts associated with rotting wood habitats, four are worth mentioning for their ability to assimilate/ferment lignocellulose-related sugars and/or to produce enzymes that act on this substrate: Scheffersomyces, Spathaspora, Spencermartinsiella, and Sugiyamaella. In addition to these clades, Candida tropicalis (Candida albicans/Lodderomyces clade) is a species that deserves attention because it is frequently found in decaying plant materials. Aureobasidium pullulans and basidiomycetous species of the genera Apiotrichum, Cutaneotrichosporon, Cystofilobasidium, Naganishia, Papiliotrema, Pseudotremella, Saitozyma, Solicoccozyma, Tausonia, Trichosporon, Vanrija, and Vishniacozyma are also frequently reported occurring in these substrates. The physiological characteristics that allowed these yeasts to adapt to decaying plant substrates make these organisms interesting for biotechnological applications.


Yeast diversity Plant materials Decomposition Hydrolytic enzymes 



We would like to thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação do Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for their financial support.


  1. Adsul MG, Bastawde KB, Gokhale DV (2009) Biochemical characterization of two xylanases from yeast Pseudozyma hubeiensis producing only xylooligosaccharides. Biores Technol 100:6488–6495CrossRefGoogle Scholar
  2. Ahmed S, Riaz S, Jamil A (2009) Molecular cloning of fungal xylanases: an overview. Appl Microbiol Biotechnol 84:19–35PubMedCrossRefGoogle Scholar
  3. Alimardani-Theuil P, Gainvors-Claisse A, Duchiron F (2011) Yeasts: an attractive source of pectinases—from gene expression to potential applications: a review. Process Biochem 46:1525–1537CrossRefGoogle Scholar
  4. Baldrian P (2008) Enzymes of saprotrophic basidiomycetes. In: Boddy L, Frankland JC, van West P (eds) British mycological society symposia series, vol 28. Elsevier, Amsterdam, pp 19–41Google Scholar
  5. Baldrian P, Valášková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521PubMedCrossRefGoogle Scholar
  6. Baldy V, Gessner MO, Chauvet E (1995) Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74:93–102CrossRefGoogle Scholar
  7. Barbosa AC, Cadete RM, Gomes FC, Lachance M-A, Rosa CA (2009) Candida materiae sp. nov., a yeast species isolated from rotting wood in the Atlantic Rain Forest. Int J Syst Evol Microbiol 59:2104–2106PubMedCrossRefGoogle Scholar
  8. Bedriñana RP, Queipo AL, Valles BS (2012) Screening of enzymatic activities in non-Saccharomyces cider yeasts. J Food Biochem 36:683–689CrossRefGoogle Scholar
  9. Berg B, McClaugherty C (2008) Plant litter. Decomposition, humus formation, carbon sequestration, 2nd edn. Springer, HeidelbergGoogle Scholar
  10. Bhadra B, Rao RS, Singh PK, Sarkar PK, Shivaji S (2008) Yeasts and yeast-like fungi associated with tree bark: diversity and identification of yeasts producing extracellular endoxylanases. Curr Microbiol 56:489–494PubMedCrossRefGoogle Scholar
  11. Biely P, Kremnicky L (1998) Yeasts and their enzyme systems degrading cellulose, hemicelluloses and pectin. Food Technol Biotechnol 36:305–312Google Scholar
  12. Biely P, Vršanská M, Krátký Z (1980) Xylan-degrading enzymes of the yeast Cryptococcus albidus. Eur J Biochem 108:313–321PubMedCrossRefGoogle Scholar
  13. Blanchette RA, Shaw CG (1978) Associations among bacteria, yeasts, and basidiomycetes during wood decay. Phytopathology 68:631–637CrossRefGoogle Scholar
  14. Blanco P, Sieiro C, Villa TG (1999) Production of pectic enzymes in yeasts. FEMS Microbiol Lett 175:1–9PubMedCrossRefGoogle Scholar
  15. Borges TA, de Souza AT, Squina FM, Riaño-Pachón DM, dos Santos RAC, Machado E, Oliveira JVC, Damásio ARL, Goldman GH (2014) Biochemical characterization of an endoxylanase from Pseudozyma brasiliensis sp. nov. strain GHG001 isolated from the intestinal tract of Chrysomelidae larvae associated to sugarcane roots. Process Biochem 49:77–83CrossRefGoogle Scholar
  16. Botha A (2011) The importance and ecology of yeasts in soil. Soil Biol Biochem 43:1–8CrossRefGoogle Scholar
  17. Brandão LR, Libkind D, Vaz ABM, Santo LCE, Moliné M, de García V, van Broock M, Rosa CA (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13PubMedCrossRefGoogle Scholar
  18. Brizzio S, Turchetti B, de García V, Libkind D, Buzzini P, van Broock M (2007) Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of northwest Patagonia (Argentina). Can J Microbiol 53:519–525PubMedCrossRefGoogle Scholar
  19. Buzzini P, Martini A (2002) Extracellular enzymatic activity profiles in yeast and yeast-like strains isolated from tropical environments. J Appl Microbiol 93:1020–1025PubMedCrossRefGoogle Scholar
  20. Cadete RM, Santos RO, Melo MA, Mouro A, Gonçalves DL, Stambuk BU, Gomes FCO, Lachance M-A, Rosa CA (2009) Spathaspora arborariae sp. nov., a D-xylose-fermenting yeast species isolated from rotting wood in Brazil. FEMS Yeast Res 9:1338–1342PubMedCrossRefGoogle Scholar
  21. Cadete RM, Melo MA, Lopes MR, Pereira GMD, Zilli JE, Vital MJS, Gomes FCO, Lachance M-A, Rosa CA (2012a) Candida amazonensis sp. nov., an ascomycetous yeast isolated from rotting wood in the Amazonian forest. Int J Syst Evol Microbiol 62:1438–1440PubMedCrossRefGoogle Scholar
  22. Cadete RM, Melo MA, Dussan KJ, Rodrigues RC, da Silva SS, Zilli JE, Vital MJS, Gomes FCO, Lachance M-A, Rosa CA (2012b) Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian forest. PLoS One 7:e43135PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cadete RM, Melo MA, Zilli JE, Vital MJ, Mouro A, Prompt AH, Gomes FCO, Stambuk BU, Lachance M-A, Rosa CA (2013) Spathaspora brasiliensis sp. nov., Spathaspora suhii sp. nov., Spathaspora roraimanensis sp. nov. and Spathaspora xylofermentans sp. nov., four novel D-xylose-fermenting yeast species from Brazilian Amazonian forest. A van Leeuwenhoek 103:421–431CrossRefGoogle Scholar
  24. Cadete RM, Fonseca C, Rosa CA (2014) Novel yeast strains from Brazilian biodiversity: biotechnological applications in lignocellulose conversion into biofuels. In: da Silva SS, Chandel AK (eds) Biofuels in Brazil. Springer, Cham, pp 255–279CrossRefGoogle Scholar
  25. Cadete RM, Cheab MAM, Santos RO, Safar SVB, Zilli JE, Vital MJS, Basso LC, Lee C-F, Kurtzman CP, Lachance M-A, Rosa CA (2015) Cyberlindnera xylosilytica sp. nov., a xylitol-producing yeast species isolated from lignocellulosic materials. Int J Syst Evol Microbiol 65:2968–2974PubMedCrossRefGoogle Scholar
  26. Cadete RM, Alejandro M, Sandström AG, Ferreira C, Gírio F, Gorwa-Grauslund MF, Rosa CA, Fonseca C (2016a) Exploring xylose metabolism in Spathaspora species: XYL1. 2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae. Biotechnol Biofuels 9:1–14CrossRefGoogle Scholar
  27. Cadete RM, Melo-Cheab MA, Viana AL, Oliveira ES, Fonseca C, Rosa CA (2016b) The yeast Scheffersomyces amazonensis is an efficient xylitol producer. World J Microbiol Biotechnol 32:207PubMedCrossRefGoogle Scholar
  28. Carvalho P, de Souza AC, Magalhatilde KT, Dias DR, Silva CF, Schwan RF (2013) Yeasts diversity in Brazilian Cerrado soils: study of the enzymatic activities. Afr J Microbiol Res 7:4176–4190CrossRefGoogle Scholar
  29. Chang CF, Yao CH, Young SS, Limtong S, Kaewwichian R, Srisuk N, Lee CF (2011) Candida gosingica sp. nov., an anamorphic ascomycetous yeast closely related to Scheffersomyces spartinae. Int J Syst Evol Microbiol 61:690–694PubMedCrossRefGoogle Scholar
  30. Crawford RL (1981) Lignin biodegradation and transformation. Wiley, New YorkGoogle Scholar
  31. da Silva EG, Borges MF, Medina C, Piccoli RH, Schwan RF (2005) Pectinolytic enzymes secreted by yeasts from tropical fruits. FEMS Yeast Res 5:859–865PubMedCrossRefGoogle Scholar
  32. Daniel HM, Lachance MA, Kurtzman CP (2014) On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. A van Leeuwenhoek 106:67–84CrossRefGoogle Scholar
  33. de Arruda PV, dos Santos JC, Rodrigues RCLB, da Silva DDV, Yamakawa CK, Rocha GJM, Nolasco Júnior J, Pradella JGC, Rossell CEV, Felipe MGA (2016) Scale up of xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Candida guilliermondii FTI 20037. J Ind Eng Chem. doi: 10.1016/j.jiec.2016.11.046
  34. de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dennis C (1972) Breakdown of cellulose by yeast species. Microbiology 71:409–411Google Scholar
  36. Dlauchy D, Lee CF, Péter G (2012) Spencermartinsiella ligniputridi sp. nov., a yeast species isolated from rotten wood. Int J Syst Evol Microbiol 62:2799–2804PubMedCrossRefGoogle Scholar
  37. Eastwood DC, Floudas D, Binder M, Majcherczyk A, Schneider P, Aerts A, Asiegbu FO, Baker SE, Barry K, Bendiksby M, Blumentritt M, Coutinho PM, Cullen D, de Vries RP, Gathman A, Goodell B, Henrissat B, Ihrmark K, Kauserud H, Kohler A, LaButti K, Lapidus A, Lavin JL, Lee YH, Lindquist E, Lilly W, Lucas S, Morin E, Murat C, Oguiza JA, Park J, Pisabarro AG, Riley R, Rosling A, Salamov A, Schmidt O, Schmutz J, Skrede I, Stenlid J, Wiebenga A, Xie X, Kües U, Hibbett DS, Hoffmeister D, Högberg N, Martin F, Grigoriev IV, Watkinson SC (2011) The plant cell wall–decomposing machinery underlies the functional diversity of forest fungi. Science 333:762–765PubMedCrossRefGoogle Scholar
  38. Eriksson KEL, Blanchette RA, Ander P (2012) Microbial and enzymatic degradation of wood and wood components. Springer Science & Business Media, New YorkGoogle Scholar
  39. Fernández FJ, López-Estepa M, Querol-García J, Vega MC (2016) Production of protein complexes in non-methylotrophic and methylotrophic yeasts. In: Vega MC (ed) Advanced technologies for protein complex production and characterization. Springer, Cham, pp 137–153CrossRefGoogle Scholar
  40. Fisher SG, Likens GE (1973) Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–439CrossRefGoogle Scholar
  41. Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadav JS, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho PM, de Vries RP, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens JA, Kallen N, Kersten P, Kohler A, Kües U, Kumar TKA, Kuo A, LaButti K, Larrondo LF, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin DJ, Morgenstern I, Morin E, Murat C, Nagy LG, Nolan M, Ohm RA, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas FJ, Sabat G, Salamov A, Samejima M, Schmutz J, Slot JC, St. John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood DC, Martin F, Cullen D, Grigoriev IV, Hibbett DS (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719PubMedCrossRefGoogle Scholar
  42. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800PubMedCrossRefGoogle Scholar
  43. Gomes FCO, Safar SVB, Marques AR, Medeiros AO, Santos ARO, Carvalho C, Lachance MA, Sampaio JP, Rosa CA (2015) The diversity and extracellular enzymatic activities of yeasts isolated from water tanks of Vriesea minarum, an endangered bromeliad species in Brazil, and the description of Occultifur brasiliensis f.a., sp. nov. A van Leeuwenhoek 107:597–611CrossRefGoogle Scholar
  44. Gonçalves JF, França JS, Medeiros AO, Rosa CA, Callisto M (2006) Leaf breakdown in a tropical stream. Int Rev Hydrobiol 91:164–177CrossRefGoogle Scholar
  45. González AE, Martinez AT, Almendros G, Grinbergs J (1989) A study of yeasts during the delignification and fungal transformation of wood into cattle feed in Chilean rain forest. A van Leeuwenhoek 55:221–236CrossRefGoogle Scholar
  46. Green F, Highley TL (1997) Mechanism of brown-rot decay: paradigm or paradox. Int Biodeterior Biodegrad 39:113–124CrossRefGoogle Scholar
  47. Grover N, Nawange SR, Naidu J, Singh SM, Sharma A (2007) Ecological niche of Cryptococcus neoformans var. grubii and Cryptococcus gattii in decaying wood of trunk hollows of living trees in Jabalpur City of Central India. Mycopathologia 164:159–170PubMedCrossRefGoogle Scholar
  48. Guamán-Burneo MC, Dussán KJ, Cadete RM, Cheab MAM, Portero P, Carvajal-Barriga EJ, da Silva SS, Rosa CA (2015) Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis fa, sp. nov. A van Leeuwenhoek 108:919–931CrossRefGoogle Scholar
  49. Guo X, Zhu H, Bai FY (2012) Candida cellulosicola sp. nov., a xylose-utilizing anamorphic yeast from rotten wood. Int J Syst Evol Microbiol 62:242–245PubMedCrossRefGoogle Scholar
  50. Handel S, Wang T, Yurkov AM, König H (2016) Sugiyamaella mastotermitis sp. nov. and Papiliotrema odontotermitis fa, sp. nov. from the gut of the termites Mastotermes darwiniensis and Odontotermes obesus. Int J Syst Evol Microbiol 66:4600–4608PubMedCrossRefGoogle Scholar
  51. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30:454–466CrossRefGoogle Scholar
  52. Hon DNS (1994) Cellulose: a random walk along its historical path. Cellulose 1:1–25CrossRefGoogle Scholar
  53. Hou X (2012) Anaerobic xylose fermentation by Spathaspora passalidarum. Appl Microbiol Biotechnol 94:205–214PubMedCrossRefGoogle Scholar
  54. Hrmová M, Biely P, Vršanská M, Petráková E (1984) Induction of cellulose-and xylan-degrading enzyme complex in the yeast Trichosporon cutaneum. Arch Microbiol 138:371–376CrossRefGoogle Scholar
  55. Hu ML, Zha J, He LW, Lv YJ, Shen MH, Zhong C, Li BZ, Yuan YJ (2016) Enhanced bioconversion of cellobiose by industrial Saccharomyces cerevisiae used for cellulose utilization. Front Microbiol 7:241PubMedPubMedCentralGoogle Scholar
  56. Irshad M, Asgher M, Anwar Z, Ahmad A (2014) Biotechnological valorization of pectinolytics and their industrial applications: a review. Nat Prod Commun 9:1649–1654PubMedGoogle Scholar
  57. Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944CrossRefGoogle Scholar
  58. Jeffries TW, Jin YS (2000) Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 47:221–268PubMedCrossRefGoogle Scholar
  59. Jiménez M, Gonzalez AE, Martinez MJ, Martinez AT, Dale BE (1991) Screening of yeasts isolated from decayed wood for lignocellulose-degrading enzyme activities. Mycol Res 95:1299–1302CrossRefGoogle Scholar
  60. Knob A, Terrasan CRF, Carmona EC (2010) β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407CrossRefGoogle Scholar
  61. Kumar V, Shukla P (2016) Functional aspects of xylanases toward industrial applications. In: Shukla P (ed) Frontier discoveries and innovations in interdisciplinary microbiology. Springer, India, pp 157–165CrossRefGoogle Scholar
  62. Kurtzman CP (2011) A new methanol assimilating yeast, Ogataea parapolymorpha, the ascosporic state of Candida parapolymorpha. A van Leeuwenhoek 100:455–462CrossRefGoogle Scholar
  63. Kurtzman CP, Robnett CJ (2007) Multigene phylogenetic analysis of the Trichomonascus, Wickerhamiella and Zygoascus yeast clades, and the proposal of Sugiyamaella gen. nov. and 14 new species combinations. FEMS Yeast Res 7:141–151PubMedCrossRefGoogle Scholar
  64. Kurtzman CP, Robnett CJ (2013) Relationships among genera of the Saccharomycotina (Ascomycota) from multigene phylogenetic analysis of type species. FEMS Yeast Res 13:23–33PubMedCrossRefGoogle Scholar
  65. Kurtzman C, Fell JW, Boekhout T (eds) (2011) The yeasts: a taxonomic study, 5th edn. Amsterdam, ElsevierGoogle Scholar
  66. Lara CA, Santos RO, Cadete RM, Ferreira C, Marques S, Gírio F, Oliveira ES, Rosa CA, Fonseca C (2014) Identification and characterization of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil. A van Leeuwenhoek 105:1107–1119CrossRefGoogle Scholar
  67. Lazéra MS, Cavalcanti MAS, Trilles L, Nishikawa MM, Wanke B (1998) Cryptococcus neoformans var. gattii—evidence for a natural habitat related to decaying wood in a pottery tree hollow. Med Mycol 36:119–122PubMedGoogle Scholar
  68. Leathers TD (1986) Color variants of Aureobasidium pullulans overproduce xylanase with extremely high specific activity. Appl Environ Microbiol 52:1026–1030PubMedPubMedCentralGoogle Scholar
  69. Leclerc M, Arnaud A, Ratomahenina R et al (1987) Yeast β-glucosidases. Biotechnol Genet Eng Rev 5:269–296CrossRefGoogle Scholar
  70. Liu XJ, Cao WN, Ren YC, Xu LL, Yi ZH, Liu Z, Hui FL (2016a) Taxonomy and physiological characterisation of Scheffersomyces titanus sp. nov., a new d-xylose-fermenting yeast species from China. Sci Rep 6:32181PubMedPubMedCentralCrossRefGoogle Scholar
  71. Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2016b) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147PubMedCentralCrossRefGoogle Scholar
  72. Lopes MR, Morais CG, Kominek J, Cadete RM, Soares MA, Uetanabaro APT, Fonseca C, Lachance MA, Hittinger CT, Rosa CA (2016) Genomic analysis and d-xylose fermentation of three novel Spathaspora species: Spathaspora girioi sp. nov., Spathaspora hagerdaliae f.a., sp. nov. and Spathaspora gorwiae f.a., sp. nov. FEMS Yeast Res 16:fow044PubMedCrossRefGoogle Scholar
  73. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577PubMedPubMedCentralCrossRefGoogle Scholar
  74. Maksimova IA, Chernov IY (2004) Community structure of yeast fungi in forest biogeocenoses. Microbiology 73:474–481CrossRefGoogle Scholar
  75. Martínez AT, Speranza M, Ruiz-Duenãs FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204PubMedGoogle Scholar
  76. Middelhoven WJ (1993) Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeastlike fungi. A van Leeuwenhoek 63:125–144CrossRefGoogle Scholar
  77. Mohamad NL, Mustapa Kamal SM, Mokhtar MN (2015) Xylitol biological production: a review of recent studies. Food Rev Intl 31:74–89CrossRefGoogle Scholar
  78. Molnárová J, Vadkertiová R, Stratilová E (2014) Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees. J Basic Microbiol 54:S74–S84PubMedCrossRefGoogle Scholar
  79. Morais CG, Lara CA, Marques S, Fonseca C, Lachance MA, Rosa CA (2013a) Sugiyamaella xylanicola sp. nov., a xylan-degrading yeast species isolated from rotting wood. Int J Syst Evol Microbiol 63:2356–2360PubMedCrossRefGoogle Scholar
  80. Morais CG, Cadete RM, Uetanabaro APT, Rosa LH, Lachance MA, Rosa CA (2013b) D-xylose-fermenting and xylanase-producing yeast species from rotting wood of two Atlantic Rainforest habitats in Brazil. Fungal Genet Biol 60:19–28PubMedCrossRefGoogle Scholar
  81. Morais CG, Lara CA, Borelli BM, Cadete RM, Moreira JD, Lachance MA, Rosa CA (2016a) Saturnispora bothae sp. nov., isolated from rotting wood. Int J Syst Evol Microbiol 66:3810–3813PubMedCrossRefGoogle Scholar
  82. Morais CG, Lara CA, Oliveira ES, Péter G, Dlauchy D, Rosa CA (2016b) Spencermartinsiella silvicola sp. nov., a yeast species isolated from rotting wood. Int J Syst Evol Microbiol 66:604–608CrossRefGoogle Scholar
  83. Nguyen NH, Suh SO, Marshall CJ et al (2006) Morphological and ecological similarities: wood-boring beetles associated with novel xylose-fermenting yeasts, Spathaspora passalidarum gen. sp. nov. and Candida jeffriesii sp. nov. Mycol Res 110:1232–1241PubMedCrossRefGoogle Scholar
  84. Nilsson T, Daniel G (1989) Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung [ZDB] 43:11–18CrossRefGoogle Scholar
  85. Osono T, To-Anun C, Hagiwara Y, Hirose D (2011) Decomposition of wood, petiole and leaf litter by Xylaria species from northern Thailand. Fungal Ecol 4:210–218CrossRefGoogle Scholar
  86. Otero RRC, Iranzo JFU, Briones-Perez AI, Potgieter N, Villena MA, Pretorius IS, Rensburg PV (2003) Characterization of the β-glucosidase activity produced by enological strains of non-Saccharomyces yeasts. J Food Sci 68:2564–2569CrossRefGoogle Scholar
  87. Özcan S, Kötter P, Ciciary M (1991) Xylan-hydrolysing enzymes of the yeast Pichia stipitis. Appl Microbiol Biotechnol 36:190–195CrossRefGoogle Scholar
  88. Patel SJ, Savanth VD (2015) Review on fungal xylanases and their applications. Int J Adv Res 3:311–315Google Scholar
  89. Péter G, Tornai-Lehoczki J, Fülöp L, Dlauchy D (2003) Six new methanol assimilating yeast species from wood material. A van Leeuwenhoek 84:147–159CrossRefGoogle Scholar
  90. Péter G, Dlauchy D, Tornai-Lehoczki J, Suzuki M, Kurtzman CP (2011) Spencermartinsiella europaea gen. nov., sp. nov., a new member of the family Trichomonascaceae. Int J Syst Evol Microbiol 61:993–1000PubMedCrossRefGoogle Scholar
  91. Pettersen RC (1984) The chemical composition of wood. Chem Solid Wood 207:57–126CrossRefGoogle Scholar
  92. Prakasham RS, Rao RS, Hobbs PJ (2009) Current trends in biotechnological production of xylitol and future prospects. Curr Trends Biotechnol Pharm 3:8–36Google Scholar
  93. Purahong W, Wubet T, Lentendu G (2016) Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol Ecol 25:4059–4074PubMedCrossRefGoogle Scholar
  94. Randhawa HS, Mussa AY, Khan ZU (2001) Decaying wood in tree trunk hollows as a natural substrate for Cryptococcus neoformans and other yeast-like fungi of clinical interest. Mycopathologia 151:63–69PubMedCrossRefGoogle Scholar
  95. Rao LV, Goli JK, Gentela J, Koti S (2016) Bioconversion of lignocellulosic biomass to xylitol: an overview. Biores Technol 213:299–310CrossRefGoogle Scholar
  96. Ren Y, Chen L, Niu Q, Hui F (2014) Description of Scheffersomyces henanensis sp. nov., a new d-xylose-fermenting yeast species isolated from rotten wood. PLoS One 9:e92315PubMedPubMedCentralCrossRefGoogle Scholar
  97. Romaní AM, Fischer H, Mille-Lindblom C, Tranvik LJ (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87:2559–2569PubMedCrossRefGoogle Scholar
  98. Sampaio JP (1999) Utilization of low molecular weight aromatic compounds by heterobasidiomycetous yeasts: taxonomic implications. Can J Microbiol 45:491–512PubMedCrossRefGoogle Scholar
  99. Sampaio A, Cortes R, Leão C (2001) Invertebrate and microbial colonisation in native and exotic leaf litter species in a mountain stream. Int Rev Hydrobiol 86:527–540CrossRefGoogle Scholar
  100. Sampaio A, Cortes R, Leão C (2004) Yeast and macroinvertebrate communities associated with leaf litter decomposition in a second order stream. Int Rev Hydrobiol 89:453–466CrossRefGoogle Scholar
  101. Sampaio A, Sampaio JP, Leão C (2007) Dynamics of yeast populations recovered from decaying leaves in a nonpolluted stream: a 2-year study on the effects of leaf litter type and decomposition time. FEMS Yeast Res 7:595–603PubMedCrossRefGoogle Scholar
  102. Santos RO, Cadete RM, Badotti F, Mouro A, Wallheim DO, Gomes FCO, Stambuk BU, Lachance MA, Rosa CA (2011) Candida queiroziae sp. nov., a cellobiose-fermenting yeast species isolated from rotting wood in Atlantic Rain Forest. A van Leeuwenhoek 99:635–642CrossRefGoogle Scholar
  103. Santos ARO, Faria ES, Lachance MA, Rosa CA (2015) Ogataea mangiferae sp. nov., a methylotrophic yeast isolated from mango leaves. Int J Syst Evol Microbiol 65:1855–1859PubMedCrossRefGoogle Scholar
  104. Schmidt O (2006) Wood cell wall degradation. In: Schmidt O (ed) Wood and tree fungi: biology, damage, protection, and use. Springer, Heidelberg, pp 87–107Google Scholar
  105. Sena LM, Morais CG, Lopes MR, Santos RO, Uetanabaro AP, Morais PB, Vital MJS, de Morais Jr MA, Lachance MA, Rosa CA (2017) d-Xylose fermentation, xylitol production and xylanase activities by seven new species of Sugiyamaella. A van Leeuwenhoek. doi: 10.1007/s10482-016-0775-5
  106. Sharma A, Tewari R, Rana SS, Soni R, Soni SK (2016) Cellulases: classification, methods of determination and industrial applications. Appl Biochem Biotechnol 199:1346–1380CrossRefGoogle Scholar
  107. Štursová M, Žifčáková L, Leigh MB, Burgess R, Baldrian P (2012) Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. FEMS Microbiol Ecol 80:735–746PubMedCrossRefGoogle Scholar
  108. Suh SO, Marshall CJ, Mchugh JV, Blackwell M (2003) Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol 12:3137–3145PubMedCrossRefGoogle Scholar
  109. Suh SO, Houseknecht JL, Gujjari P, Zhou JJ (2013) Scheffersomyces parashehatae fa, sp. nov., Scheffersomyces xylosifermentans fa, sp. nov., Candida broadrunensis sp. nov. and Candida manassasensis sp. nov., novel yeasts associated with wood-ingesting insects, and their ecological and biofuel implications. Int J Syst Evol Microbiol 63:4330–4339PubMedCrossRefGoogle Scholar
  110. Tanaka Y (1991) Microbial decomposition of reed (Phragmites communis) leaves in a saline lake. Hydrobiologia 220:119–129CrossRefGoogle Scholar
  111. Thongekkaew J, Khumsap A, Chatsa-nga P (2012) Yeasts in mixed deciduous forest areas of Phujong Nayoy National Park and their ability to produce xylanase and carboxymethyl cellulose. Songklanakarin J Sci Techonol 34:157–163Google Scholar
  112. Urbina H, Blackwell M (2012) Multilocus phylogenetic study of the Scheffersomyces yeast clade and characterization of the N-terminal region of xylose reductase gene. PLoS One 7:e39128PubMedPubMedCentralCrossRefGoogle Scholar
  113. Urbina H, Frank R, Blackwell M (2013a) Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade. Mycologia 105:650–660PubMedCrossRefGoogle Scholar
  114. Urbina H, Schuster J, Blackwell M (2013b) The gut of Guatemalan passalid beetles: a habitat colonized by cellobiose-and xylose-fermenting yeasts. Fungal Ecol 6:339–355CrossRefGoogle Scholar
  115. Ur-Rehman S, Mushtaq Z, Zahoor T, Jamil A, Murtaza MA (2015) Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Crit Rev Food Sci Nutr 55:1514–1528PubMedCrossRefGoogle Scholar
  116. van der Wal A, Geydan TD, Kuyper TW, de Boer W (2013) A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol Rev 37:477–494PubMedCrossRefGoogle Scholar
  117. Vaz ABM, Rosa LH, Vieira MLA, de Garcia V, Brandão LR, Teixeira LCRS, Moliné M, Libkind D, van Broock M, Rosa CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947PubMedPubMedCentralCrossRefGoogle Scholar
  118. Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486PubMedCrossRefGoogle Scholar
  119. Wang W, Ling H, Zhao H (2015) Steam explosion pretreatment of corn straw on xylose recovery and xylitol production using hydrolysate without detoxification. Process Biochem 50:1623–1628CrossRefGoogle Scholar
  120. Wang Y, Ren YC, Zhang ZT, Ke T, Hui FL (2016) Spathaspora allomyrinae sp. nov., a d-xylose-fermenting yeast species isolated from a scarabeid beetle Allomyrina dichotoma. Int J Syst Evol Microbiol. doi: 10.1099/ijsem.0.000979
  121. Ward OP, Moo-Young M, Venkat K (1989) Enzymatic degradation of cell wall and related plant polysaccharides. Crit Rev Biotechnol 8:237–274PubMedCrossRefGoogle Scholar
  122. Watanabe T, Suzuki K, Sato I, Morita T, Koike H, Shinozaki Y, Ueda H, Koitabashi M, Kitamoto HK (2015) Simultaneous bioethanol distillery wastewater treatment and xylanase production by the phyllosphere yeast Pseudozyma antarctica GB-4 (0). AMB Express 5:36PubMedCentralCrossRefGoogle Scholar
  123. Wei H, Xu Q, Taylor LE, Baker JO, Tucker MP, Ding SY (2009) Natural paradigms of plant cell wall degradation. Curr Opin Biotechnol 20:330–338PubMedCrossRefGoogle Scholar
  124. Wolter KE, Highley TL, Evans FJ (1980) A unique polysaccharide-and glycoside-degrading enzyme complex from the wood-decay fungus Poria placenta. Biochem Biophys Res Commun 97:1499–1504PubMedCrossRefGoogle Scholar
  125. Worrall JJ, Anagnost SE, Zabel RA (1997) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89:199–219CrossRefGoogle Scholar
  126. Wuczkowski M, Metzger E, Sterflinger K, Prillinger H (2005) Diversity of yeasts isolated from litter and soil of different natural forest sites in Austria. Bodenkultur-Wie and Munchen 56:201Google Scholar
  127. Yelle DJ, Ralph J, Lu F, Hammel KE (2008) Evidence for cleavage of lignin by a brown rot basidiomycete. Environ Microbiol 10:1844–1849PubMedCrossRefGoogle Scholar
  128. Zhang Z, Donaldson AA, Ma X (2012) Advancements and future directions in enzyme technology for biomass conversion. Biotechnol Adv 30:913–919PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Raquel M. Cadete
    • 1
  • Mariana R. Lopes
    • 1
  • Carlos A. Rosa
    • 1
    Email author
  1. 1.Departamento de Microbiologia, Instituto de Ciências Biológicas, C.P. 486Universidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations