Phylloplane Yeasts in Temperate Climates

  • Martin KemlerEmail author
  • Frederick Witfeld
  • Dominik Begerow
  • Andrey Yurkov


Yeasts are integral parts of phylloplane communities of temperate regions, where ecosystems are not only influenced by short-term fluctuations in abiotic conditions, but additionally by cyclic seasonal changes. Phylloplane yeasts possess physiological adaptations, such as pigmentation and extracellular polysaccharides that enable them to resist harsh conditions encountered in these environments. Additionally, through production of plant hormone-like metabolites, they also might influence the behavior, fitness, and growth of their plant host. Here we review how the understanding of yeasts in this environment has improved in the last years due to discoveries in new habitats, new developments in taxonomy, but also the application of environmental sequencing and genomics. These new technologies, as well as traditional approaches, have made it clear that yeasts are not only occupying this environment to gain nutrients, but they are active participants that shape the structure of microbial communities by diverse interactions with other community members.


Yeast communities Yeast taxonomy Sphagnum Biofilm Yeast pigmentation 


  1. Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48:542–547PubMedCrossRefGoogle Scholar
  3. Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andreadis SS, Witzgall P, Becher PG (2015) Survey of arthropod assemblages responding to live yeasts in an organic apple orchard. Front Ecol Evol 3:121CrossRefGoogle Scholar
  5. Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66CrossRefGoogle Scholar
  6. Babjeva IP, Reshetova I (1998) Yeast resources in natural habitats at polar circle latitude. Food Technol Biotechnol 36:1–6Google Scholar
  7. Babjeva IP, Kartintseva AA, Maksimova IA, Chernov IY (1999) Yeasts in the spruce forests of the Central Forest Reserve. Vestn Mosk Univ Ser Pochvoved 4:45–49Google Scholar
  8. Bálint M, Tiffin P, Hallström B, O’Hara RB, Olson MS, Fankhauser JD, Piepenbring M, Schmitt I (2013) Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). PLoS One 8:e53987PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bálint M, Bartha L, O’Hara RB, Olson MS, Otte J, Pfenninger M, Robertson AL, Tiffin P, Schmitt I (2015) Relocation, high-latitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Mol Ecol 24:235–248PubMedCrossRefGoogle Scholar
  10. Barda O, Shalev O, Alster S, Buxdorf K, Gafni A, Levy M (2014) Pseudozyma aphidis induces salicylic-acid-independent resistance to Clavibacter michiganensis in tomato plants. Plant Dis 99:621–626CrossRefGoogle Scholar
  11. Begerow D, Kemler M, Feige A, Yurkov AM (2017) Parasitism in yeasts. In: Buzzini P, Lachance MA, Yurkov AM (eds) Yeasts in natural ecosystems: ecology. Springer, Heidelberg, pp 179–210Google Scholar
  12. Bellora N, Moliné M, David-Palma M, Coelho MA, Hittinger CT, Sampaio JP, Gonçalves P, Libkind D (2016) Comparative genomics provides new insights into the diversity, physiology, and sexuality of the only industrially exploited tremellomycete: Phaffia rhodozyma. BMC Genomics 17:901PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bennett JW, Hung R, Lee S, Padhi S (2012) Fungal and bacterial volatile organic compounds: an overview and their role as ecological signaling agents. In: Hock B (ed) Fungal associations. Springer, Berlin, pp 373–393CrossRefGoogle Scholar
  14. Blankenship JR, Mitchell AP (2006) How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9:588–594PubMedCrossRefGoogle Scholar
  15. Brandão LR, Libkind D, Vaz ABM, Espírito Santo LC, Moliné M, de García V, van Broock M, Rosa CA (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13PubMedCrossRefGoogle Scholar
  16. Buxdorf K, Rahat I, Gafni A, Levy M (2013) The epiphytic fungus Pseudozyma aphidis induces jasmonic acid- and salicylic acid/nonexpressor of PR1-independent local and systemic resistance. Plant Physiol 161:2014–2022PubMedPubMedCentralCrossRefGoogle Scholar
  17. Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241PubMedCrossRefGoogle Scholar
  18. Cabral D, Stone JK, Carroll GC (1993) The internal mycobiota of Juncus spp.: microscopic and cultural observations of infection patterns. Mycol Res 97:367–376CrossRefGoogle Scholar
  19. Chernov IY, Glushakova AM, Kachalkin AV (2013) Annotated list of yeasts from Moscow region. Mikol Fitopatol 47:103–115Google Scholar
  20. Cissé OH, Almeida JM, Fonseca A, Kumar AA, Salojärvi J, Overmyer K, Hauser PM, Pagni M (2013) Genome sequencing of the plant pathogen Taphrina deformans, the causal agent of peach leaf curl. MBio 4:e00055-13PubMedPubMedCentralCrossRefGoogle Scholar
  21. Coelho MA, Gonçalves P, Sampaio JP (2011) Evidence for maintenance of sex determinants but not of sexual stages in red yeasts, a group of early diverged basidiomycetes. BMC Evol Biol 11:249PubMedPubMedCentralCrossRefGoogle Scholar
  22. Combet E, Eastwood DC, Burton KS, Henderson J (2006) Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47:317–326CrossRefGoogle Scholar
  23. Cordero RJB, Casadevall A (2017) Functions of fungal melanin beyond virulence. Fungal Biol Rev 31(2):99–112CrossRefGoogle Scholar
  24. Cordier T, Robin C, Capdevielle X, Desprez-Loustau ML, Vacher C (2012a) Spatial variability of phyllosphere fungal assemblages: genetic distance predominates over geographic distance in a European beech stand (Fagus sylvatica). Fungal Ecol 5:509–520CrossRefGoogle Scholar
  25. Cordier T, Robin C, Capdevielle X, Fabreguettes O, Desprez-Loustau ML, Vacher C (2012b) The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. New Phytol 196:510–519PubMedCrossRefGoogle Scholar
  26. Davis TS, Boundy-Mills K, Landolt PJ (2012) Volatile emissions from an epiphytic fungus are semiochemicals for eusocial wasps. Microb Ecol 64:1056–1063PubMedCrossRefGoogle Scholar
  27. Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859PubMedCrossRefGoogle Scholar
  28. Davydenko K, Vasaitis R, Stenlid J, Menkis A (2013) Fungi in foliage and shoots of Fraxinus excelsior in eastern Ukraine: a first report on Hymenoscyphus pseudoalbidus. For Pathol 43:462–467CrossRefGoogle Scholar
  29. Duan X, Chi Z, Wang L, Wang X (2008) Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr Polym 73:587–593PubMedCrossRefGoogle Scholar
  30. Duarte AWF, Passarini MRZ, Delforno TP, Pellizzari FM, Cipro CVZ, Montone RC, Petry MV, Putzke J, Rosa LH, Sette LD (2016) Yeasts from macroalgae and lichens that inhabit the South Shetland Islands, Antarctica. Environ Microbiol Rep 8:874–885CrossRefGoogle Scholar
  31. Eastwood DC, Herman B, Noble R, Dobrovin-Pennington A, Sreenivasaprasad S, Burton KS (2013) Environmental regulation of reproductive phase change in Agaricus bisporus by 1-octen-3-ol, temperature and CO2. Fungal Genet Biol 55:54–66PubMedCrossRefGoogle Scholar
  32. Fanning S, Mitchell AP (2012) Fungal biofilms. PLoS Pathog 8:e1002585PubMedPubMedCentralCrossRefGoogle Scholar
  33. Firrincieli A, Otillar R, Salamov A, Schmutz J, Khan Z, Redman RS, Fleck ND, Lindquist E, Grigoriev IV, Doty SL (2015) Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Front Microbiol 6:978PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fonseca Á, Inácio J (2006) Phylloplane yeasts. In: Rosa C, Gábor P (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 263–301CrossRefGoogle Scholar
  35. Fonseca Á, Rodriguez M (2011) Taprhina fries (1832). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, vol 2, 5th edn. Elsevier, Amsterdam, pp 823–858CrossRefGoogle Scholar
  36. Fröhlich-Nowoisky J, Burrows SM, Xie Z, Engling G, Solomon PA, Fraser MP, Mayol-Bracero OL, Artaxo P, Begerow D, Conrad R, Andreae MO, Després VR, Pöschl U (2012) Biogeography in the air: fungal diversity over land and oceans. Biogeosciences 9:1125–1136CrossRefGoogle Scholar
  37. Fu SF, Sun PF, Lu HY, Wei JY, Xiao HS, Fang WT, Cheng BY, Chou JY (2016) Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal Biol 120:433–448PubMedCrossRefGoogle Scholar
  38. Gafni A, Calderon CE, Harris R, Buxdorf K, Dafa-Berger A, Zeilinger-Reichert E, Levy M (2015) Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Front Plant Sci 6:132PubMedPubMedCentralCrossRefGoogle Scholar
  39. Glushakova AM, Chernov IY (2007) Seasonal dynamic of the numbers of epiphytic yeasts. Microbiology 76:668–674PubMedGoogle Scholar
  40. Glushakova AM, Chernov IY (2010) Seasonal dynamics of the structure of epiphytic yeast communities. Microbiology 79:830–839CrossRefGoogle Scholar
  41. Glushakova AM, Yurkov AM, Chernov IY (2007) Massive isolation of anamorphous ascomycete yeasts Candida oleophila from plant phyllosphere. Microbiology 76:799–803CrossRefGoogle Scholar
  42. Glushakova AM, Kachalkin AV, Chernov IY (2014) Yeasts in the flowers of entomophilic plants of the Moscow region. Microbiology 83:125–134CrossRefGoogle Scholar
  43. Glushakova AM, Kachalkin AV, Zheltikova TM, Chernov IY (2015a) Yeasts associated with wind-pollinated plants – leading pollen allergens in Central Russia. Microbiology 84:722–725CrossRefGoogle Scholar
  44. Glushakova AM, Kachalkin AV, Zheltikova TM, Chernov IY (2015b) Resistance of various yeast ecological groups to prolonged storage in dry state. Microbiology 84:379–385PubMedGoogle Scholar
  45. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 Genes. Science 274:546–567PubMedCrossRefGoogle Scholar
  46. Golonka AM, Vilgalys R (2013) Nectar inhabiting yeasts in Virginian populations of Silene latifolia (Caryophyllaceae) and coflowering species. Am Midl Nat 169:235–258CrossRefGoogle Scholar
  47. Golubev WI, Golubeva EW (2004) Yeast fungi in steppe and forest phytocenoses of the Prioksko-terrasny biosphere reserve. Mikol Fitopatol 38:20–27Google Scholar
  48. Golubev WI, Sampaio JP, Golubeva EW (2006) Cryptococcus stepposus, a new filobasidiaceous yeast species found in the Prioksko-terrasny biosphere reserve in Russia. Mycol Res 110:957–961PubMedCrossRefGoogle Scholar
  49. Gostinčar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11PubMedCrossRefGoogle Scholar
  50. Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15:549PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471PubMedCrossRefGoogle Scholar
  52. Hu J, Ji L (2016) Draft genome sequences of Rhodosporidium toruloides strains ATCC 10788 and ATCC 10657 with compatible mating types. Genome Announc 4:e00098-16PubMedPubMedCentralCrossRefGoogle Scholar
  53. Inácio J, Pereira P, Carvalho M, Fonseca Á, Amaral-Collaço MT, Spencer-Martins I (2002) Estimation and diversity of phylloplane mycobiota on selected plants in a Mediterranean-type ecosystem in Portugal. Microb Ecol 44:344–353PubMedCrossRefGoogle Scholar
  54. Inácio J, Portugal L, Spencer-Martins I, Fonseca Á (2005) Phylloplane yeasts from Portugal: seven novel anamorphic species in the Tremellales lineage of the Hymenomycetes (Basidiomycota) producing orange-coloured colonies. FEMS Yeast Res 5:1167–1183PubMedCrossRefGoogle Scholar
  55. Inácio J, Ludwig W, Spencer-Martins I, Fonseca Á (2009) Assessment of phylloplane yeasts on selected Mediterranean plants by FISH with group- and species-specific oligonucleotide probes. FEMS Microbiol Ecol 71:61–72CrossRefGoogle Scholar
  56. Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448PubMedCrossRefGoogle Scholar
  57. Kachalkin AV (2010) New data on the distribution of certain psychrophilic yeasts in Moscow oblast. Microbiology 79:840–844CrossRefGoogle Scholar
  58. Kachalkin AV, Yurkov AM (2012) Yeast communities in Sphagnum phyllosphere along the temperature-moisture ecocline in the boreal forest-swamp ecosystem and description of Candida sphagnicola sp. nov. A van Leeuwenhoek 102:29–43CrossRefGoogle Scholar
  59. Kachalkin AV, Glushakova AM, Yurkov AM, Chernov IY (2008) Characterization of yeast groupings in the phyllosphere of Sphagnum mosses. Microbiology 77:474–481CrossRefGoogle Scholar
  60. Kahmann R, Kämper J (2004) Ustilago maydis: how its biology relates to pathogenic development. New Phytol 164:31–42CrossRefGoogle Scholar
  61. Kemler M, Garnas J, Wingfield MJ, Gryzenhout M, Pillay K-A, Slippers B (2013) Ion Torrent PGM as tool for fungal community analysis: a case study of endophytes in Eucalyptus grandis reveals high taxonomic diversity. PLoS One 8:e81718PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kim KW, Park EW, Ahn KK (1999) Pre-penetration behavior of Botryosphaeria dothidea on apple fruits. Plant Pathol J 15:223–227Google Scholar
  63. Klassen R, Schaffrath R, Buzzini P, Ganter PF (2017) Antagonistic interactions and killer yeasts. In: Buzzini P, Lachance MA, Yurkov AM (eds) Yeasts in natural ecosystems: ecology. Springer, Heidelberg, pp 229–275Google Scholar
  64. Kumar S, Kushwaha H, Bachhawat AK, Raghava GPS, Ganesan K (2012) Genome sequence of the oleaginous red yeast Rhodosporidium toruloides MTCC 457. Eukaryot Cell 11:1083–1084PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kurtzman CP, Robnett CJ (2015) Occultifur kilbournensis f.a. sp. nov., a new member of the Cystobasidiales associated with maize (Zea mays) cultivation. A van Leeuwenhoek 107:1323–1329CrossRefGoogle Scholar
  66. Kvasnikov EI, Nagornaia SS, Shchelokova IF (1975) Yeast flora of plant rhizosphere and phyllosphere. Microbiology 44:339–346PubMedGoogle Scholar
  67. Landell MF, Inácio J, Fonseca A, Vainstein MH, Valente P (2009) Cryptococcus bromeliarum sp. nov., an orange-coloured basidiomycetous yeast isolated from bromeliads in Brazil. Int J Syst Evol Microbiol 59:910–913PubMedCrossRefGoogle Scholar
  68. Landell MF, Brandão LR, Barbosa AC, Ramos JP, Safar SV, Gomes FC, Sousa FM, Morais PB, Broetto L, Leoncini O, Ribeiro JR, Fungsin B, Takashima M, Nakase T, Lee CF, Vainstein MH, Fell JW, Scorzetti G, Vishniac HS, Rosa CA, Valente P (2014) Hannaella pagnoccae sp. nov., a tremellaceous yeast species isolated from plants and soil. Int J Syst Evol Microbiol 64:1970–1977PubMedCrossRefGoogle Scholar
  69. Libkind D, Moliné M, Sommaruga R, Sampaio JP, van Broock M (2011) Phylogenetic distribution of fungal mycosporines within the Pucciniomycotina (Basidiomycota). Yeast 28:619–627PubMedCrossRefGoogle Scholar
  70. Limtong S, Koowadjanakul N (2012) Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol 28:3323–3335PubMedCrossRefGoogle Scholar
  71. Limtong S, Kaewwichian R, Yongmanitchai W, Kawasaki H (2014) Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol 30:1785–1796PubMedCrossRefGoogle Scholar
  72. Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147PubMedCrossRefGoogle Scholar
  73. Maksimova IA, Chernov IY (2004) Community structure of yeast fungi in forest biogeocenoses. Microbiology 73:474–481CrossRefGoogle Scholar
  74. Mannazzu I, Landolfo S, da Silva TL, Buzzini P (2015) Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest. World J Microbiol Biotechnol 31:1665–1673PubMedCrossRefGoogle Scholar
  75. Men’ko EV, Chernov IY, Byzov BA (2006) Interrelationships between yeast fungi and collembolans in soil. Microbiology 75:708–715CrossRefGoogle Scholar
  76. Mittelbach M, Vannette RL (2017) Mutualism in yeasts. In: Buzzini P, Lachance MA, Yurkov AM (eds) Yeasts in natural ecosystems: ecology. Springer, Heidelberg, pp 155–178Google Scholar
  77. Montenegro G, Portaluppi MC, Salas FA, Díaz MF (2009) Biological properties of the Chilean native moss Sphagnum magellanicum. Biol Res 42:233–237PubMedCrossRefGoogle Scholar
  78. Morin N, Calcas X, Devillers H, Durrens P, Sherman DJ, Nicaud J-M, Neuvéglise C (2014) Draft genome sequence of Rhodosporidium toruloides CECT1137, an oleaginous yeast of biotechnological interest. Genome Announc 2:e00641-14PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nassar AH, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol Fertil Soils 42:97–108CrossRefGoogle Scholar
  80. Nemčovič M, Jakubíková L, Víden I, Farkaš V (2008) Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236PubMedCrossRefGoogle Scholar
  81. Nix-Stohr S, Burpee LL, Buck JW (2008) The influence of exogenous nutrients on the abundance of yeasts on the phylloplane of turfgrass. Microb Ecol 55:15–20PubMedCrossRefGoogle Scholar
  82. Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S (2014) Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol 118:683–694PubMedCrossRefGoogle Scholar
  83. Nutaratat P, Amsri W, Srisuk N, Arunrattiyakorn P, Limtong S (2015) Indole-3-acetic acid production by newly isolated red yeast Rhodosporidium paludigenum. J Gen Appl Microbiol 61:1–9PubMedCrossRefGoogle Scholar
  84. Oechel WC, Van Cleve K (1986) The role of bryophytes in nutrient cycling in the Taiga. In: Van Cleve K, Chapin FS, Flanagan PW, Viereck LA, Dyrness CT (eds) Forest ecosystems in the Alaskan Taiga. Springer, New York, pp 121–137CrossRefGoogle Scholar
  85. Painter TJ (1998) Carbohydrate polymers in food preservation: an integrated view of the Maillard reaction with special reference to discoveries of preserved foods in Sphagnum-dominated peat bogs. Carbohydr Polym 36:335–347CrossRefGoogle Scholar
  86. Paul D, Magbanua Z, Arick M, French T, Bridges SM, Burgess SC, Lawrence ML (2014) Genome sequence of the oleaginous yeast Rhodotorula glutinis ATCC 204091. Genome Announc 13:e00046-14CrossRefGoogle Scholar
  87. Rasmussen S, Wolff C, Rudolph H (1995) Compartmentalization of phenolic constituents in Sphagnum. Phytochemistry 38:35–39CrossRefGoogle Scholar
  88. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921PubMedCrossRefGoogle Scholar
  89. Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW (2008) Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol Plant Pathol 9:339–355PubMedCrossRefGoogle Scholar
  90. Rodriguez RJ, White JF, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330PubMedCrossRefGoogle Scholar
  91. Rydin H, Gunnarsson U, Sundberg S (2006) The role of Sphagnum in peatland development and persistence. In: Wieder RK, Vitt DH (eds) Boreal peatland ecosystems. Springer, Berlin, pp 47–65CrossRefGoogle Scholar
  92. Santiago IF, Rosa CA, Rosa LH (2017) Endophytic symbiont yeasts associated with the Antarctic angiosperms Deschampsia antarctica and Colobanthus quitensis. Polar Biol 40:177–183CrossRefGoogle Scholar
  93. Scarpella E, Barkoulas M, Tsiantis M (2010) Control of leaf and vein development by auxin. Cold Spring Harb Perspect Biol 2:a001511PubMedPubMedCentralCrossRefGoogle Scholar
  94. Shetty NP, Jørgensen HJL, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 121:267–280CrossRefGoogle Scholar
  95. Solis MJL, Yurkov A, dela Cruz TE, Unterseher M (2014) Leaf-inhabiting endophytic yeasts are abundant but unevenly distributed in three Ficus species from botanical garden greenhouses in Germany. Mycol Prog 14:1019CrossRefGoogle Scholar
  96. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448PubMedCrossRefGoogle Scholar
  97. Streletskii RA, Kachalkin AV, Glushakova AM, Demin VV, Chernov IY (2016) Quantitative determination of indole-3-acetic acid in yeasts using high performance liquid chromatography – tandem mass spectrometry. Microbiology 85:727–736CrossRefGoogle Scholar
  98. Sun PF, Fang WT, Shin LY, Wei JY, Fu SF, Chou JY (2014) Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PLoS One 9:e114196PubMedPubMedCentralCrossRefGoogle Scholar
  99. Takashima M, Sugita T, Van BH, Nakamura M, Endoh R, Ohkuma M (2012) Taxonomic richness of yeasts in Japan within subtropical and cool temperate areas. PLoS One 7:e50784PubMedPubMedCentralCrossRefGoogle Scholar
  100. Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859PubMedCrossRefGoogle Scholar
  101. Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, Kõljalg U, Kisand V, Nilsson H, Hildebrand F, Bork P, Abarenkov K (2015) Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10:1–43CrossRefGoogle Scholar
  102. Thormann MN, Rice AV, Beilman DW (2007) Yeasts in peatlands: a review of richness and roles in peat decomposition. Wetlands 27:761–773CrossRefGoogle Scholar
  103. Tian H, De Smet I, Ding Z (2014) Shaping a root system: regulating lateral versus primary root growth. Trends Plant Sci 19:426–431PubMedCrossRefGoogle Scholar
  104. Tsai IJ, Tanaka E, Masuya H, Tanaka R, Hirooka Y, Endoh R, Sahashi N, Kikuchi T (2014) Comparative genomics of Taphrina fungi causing varying degrees of tumorous deformity in plants. Genome Biol Evol 6:861–872PubMedPubMedCentralCrossRefGoogle Scholar
  105. Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409CrossRefGoogle Scholar
  106. Turner NC (1973) Action of fusicoccin on the potassium balance of guard cells of Phaseolus vulgaris. Am J Bot 60(7):717–725CrossRefGoogle Scholar
  107. Unterseher M, Schnittler M (2010) Species richness analysis and ITS rDNA phylogeny revealed the majority of cultivable foliar endophytes from beech Fagus sylvatica. Fungal Ecol 3:366–378CrossRefGoogle Scholar
  108. van Breemen N (1995) How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–275PubMedCrossRefGoogle Scholar
  109. Vasileva-Tonkova E, Romanovskaya V, Gladka G, Gouliamova D, Tomova I, Stoilova-Disheva M, Tashyrev O (2014) Ecophysiological properties of cultivable heterotrophic bacteria and yeasts dominating in phytocenoses of Galindez Island, Maritime Antarctica. World J Microbiol Biotechnol 30:1387–1398PubMedCrossRefGoogle Scholar
  110. Viret O, Petrini O (1994) Colonization of beech leaves (Fagus sylvatica) by the endophyte Discula umbrinella (teleomorph: Apiognomonia errabunda). Mycol Res 98:423–432CrossRefGoogle Scholar
  111. Vishniac HS (2006) Yeast biodiversity in the Antarctic. In: Péter G, Rosa C (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 419–440CrossRefGoogle Scholar
  112. Vishniac HS, Anderson JA, Filonow AB (1997) Assimilation of volatiles from ripe apples by Sporidiobolus salmonicolor and Tilletiopsis washingtonensis. A van Leeuwenhoek 72:201–207CrossRefGoogle Scholar
  113. Wang QM, Boekhout T, Bai FY (2012) Bensingtonia rectispora sp. nov. and Bensingtonia bomiensis sp. nov., ballistoconidium-forming yeast species from Tibetan plant leaves. Int J Syst Evol Microbiol 62:2039–2044PubMedCrossRefGoogle Scholar
  114. Wang QM, Groenewald M, Takashima M, Theelen B, Han P-J, Liu X-Z, Boekhout T, Bai F-Y (2015a) Phylogeny of yeasts and related filamentous fungi within Pucciniomycotina determined from multigene sequence analyses. Stud Mycol 81:27–53PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wang QM, Yurkov AM, Göker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu XZ, Boekhout T, Bai FY (2015b) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189PubMedCrossRefGoogle Scholar
  116. Wang QM, Begerow D, Groenewald M, Liu XZ, Theelen B, Bai FY, Boekhout T (2015c) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81:55–83PubMedPubMedCentralCrossRefGoogle Scholar
  117. Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755PubMedCrossRefGoogle Scholar
  118. Womack AM, Artaxo PE, Ishida FY, Mueller RC, Saleska SR, Wiedemann KT, Bohannan BJM, Green JL (2015) Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest. Biogeosciences 12:6337–6349CrossRefGoogle Scholar
  119. Wuczkowski M, Metzger E, Sterflinger K, Prillinger H (2005) Diversity of yeasts isolated from litter and soil of different natural forest sites in Austria. Die Bodenkultur 56:201–2008Google Scholar
  120. Xin G, Glawe D, Doty SL (2009) Characterization of three endophytic, indole-3-acetic acid-producing yeasts occurring in Populus trees. Mycol Res 113:973–980PubMedCrossRefGoogle Scholar
  121. Yurkov AM (2017) Temporal and geographic patterns in yeast distribution. In: Buzzini P, Lachance MA, Yurkov AM (eds) Yeasts in natural ecosystems: ecology. Springer, Heidelberg, pp 101–130Google Scholar
  122. Yurkov AM, Maksimova IA, Chernov IY (2004) The comparative analysis of yeast communities in birch forests of the European part of Russia and Western Siberia. Mikol Fitopatol 38:71–79Google Scholar
  123. Yurkov AM, Vustin MM, Tyaglov BV, Maksimova IA, Sineokiy SP (2008) Pigmented basidiomycetous yeasts are a promising source of carotenoids and ubiquinone Q10. Microbiology 77:1–6CrossRefGoogle Scholar
  124. Yurkov AM, Krüger D, Begerow D, Arnold N, Tarkka MT (2012) Basidiomycetous yeasts from Boletales fruiting bodies and their interactions with the mycoparasite Sepedonium chrysospermum and the host fungus Paxillus. Microb Ecol 63:295–303PubMedCrossRefGoogle Scholar
  125. Yurkov A, Guerreiro MA, Sharma L, Carvalho C, Fonseca Á (2015a) Multigene assessment of the species boundaries and sexual status of the basidiomycetous yeasts Cryptococcus flavescens and C. terrestris (Tremellales). PLoS One 10:e0120400PubMedPubMedCentralCrossRefGoogle Scholar
  126. Yurkov AM, Kachalkin AV, Daniel HM, Groenewald M, Libkind D, de Garcia V, Zalar P, Gouliamova DE, Boekhout T, Begerow D (2015b) Two yeast species Cystobasidium psychroaquaticum f.a. sp. nov. and Cystobasidium rietchieii f.a. sp. nov. isolated from natural environments, and the transfer of Rhodotorula minuta clade members to the genus Cystobasidium. A van Leeuwenhoek 107:173–185CrossRefGoogle Scholar
  127. Yurkov AM, Inácio J, Chernov IY, Fonseca Á (2015c) Yeast biogeography and the effects of species recognition approaches: the case study of widespread basidiomycetous species from birch forests in Russia. Curr Microbiol 70:587–601PubMedCrossRefGoogle Scholar
  128. Zhao Z, Liu H, Wang C, J-R X (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14:274PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zhu Z, Zhang S, Liu H, Shen H, Lin X, Yang F, Zhou YJ, Jin G, Ye M, Zou H, Zou H, Zhao ZK (2012) A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun 3:1112PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Martin Kemler
    • 1
    Email author
  • Frederick Witfeld
    • 1
  • Dominik Begerow
    • 1
  • Andrey Yurkov
    • 2
  1. 1.Ruhr-Universität Bochum, AG GeobotanikBochumGermany
  2. 2.Leibniz Institute DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweigGermany

Personalised recommendations