Yeasts in Polar and Subpolar Habitats

  • Pietro Buzzini
  • Martina Turk
  • Laura Perini
  • Benedetta Turchetti
  • Nina Gunde-CimermanEmail author


The yeasts that thrive in polar and subpolar areas have to be adapted to extreme environments with low temperatures and the consequential desiccation due to freezing of water into ice crystals, with relatively high concentrations of ions, generally low levels of nutrients and, sometimes, high UV irradiation and hypoxia. Yeast communities in polar areas include circumpolar, endemic and cosmopolitan species. Although some endemic yeast species show psychrophilic behaviour, the majority of them are psychrotolerant yeasts that can adapt to growth across a wide range of temperatures. Most investigations on yeasts in polar and subpolar areas have remained limited to their biodiversity and the quantification of rare or new species. Comparative taxonomic studies of polar and subpolar habitats from Antarctic, Arctic and sub-Arctic have shown that the yeast communities belong prevalently to Basidiomycota, in contrast to the general fungal community distribution, which shows Ascomycota as the dominant phylum. The reviews on yeast diversity in cold habitats worldwide that have been published in recent years have reported the unambiguous prevalence of the former basidiomycetous genera Cryptococcus and Rhodotorula. But the recent taxonomic revision of the Pucciniomycotina and Tremellomycetes taxa positioned these polyphyletic genera into many new taxa, thus modifying the known taxonomical picture and ecological significance of the yeast distribution in polar and subpolar ecosystems. To overcome the problems associated with the quantification of unculturable microbial communities, the new high-throughput sequencing of both DNA and RNA is proving to be a valuable tool in deciphering the microbial diversity in cold environments.


Aureobasidium Candida Cryptococcus Rhodotorula 


  1. Abyzov SS (1993) Microorganisms in the Antarctic ice. In: Friedman EI (ed) Antarctic microbiology. Wiley, New York, pp 265–295Google Scholar
  2. Abyzov SS, Hoover RB, Imura S, Mitskevich IN, Naganuma T, Poglazova MN, Ivanov MV (2004) Use of different methods for discovery of ice-entrapped microorganisms in ancient layers of the Antarctic glacier. Adv Space Res 33:1222–1230CrossRefGoogle Scholar
  3. Alcaíno J, Cifuentes V, Baeza M (2015) Physiological adaptations of yeasts living in cold environments and their potential applications. World J Microbiol Biotechnol 31:1467–1473PubMedCrossRefGoogle Scholar
  4. Altunatmaz SS, Issa G, Aydin A (2012) Detection of airborne psychrotrophic bacteria and fungi in food storage refrigerators. Braz J Microbiol 43:1436–1443PubMedPubMedCentralCrossRefGoogle Scholar
  5. Andrews JH, Spear RN, Nordheim EV (2002) Population biology of Aureobasidium pullulans on apple leaf surfaces. Can J Microbiol 48:500–513PubMedCrossRefGoogle Scholar
  6. Antony R, Sanyal A, Kapse N, Dhakephalkar PK, Thamban M, Nair S (2016) Microbial communities associated with Antarctic snow pack and their biogeochemical implications. Microbiol Res 192:192–202PubMedCrossRefGoogle Scholar
  7. Arenz BE, Blanchette RA (2011) Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and McMurdo Dry Valleys. Soil Biol Biochem 43:308–315CrossRefGoogle Scholar
  8. Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea region of Antarctica. Soil Biol Biochem 38:3057–3064CrossRefGoogle Scholar
  9. Arenz BE, Held BW, Jurgens JA, Blanchette RA (2011) Fungal colonization of exotic substrates in Antarctica. Fungal Div 49:13–22CrossRefGoogle Scholar
  10. Atlas RM, di Menna ME, Cameron RE (1978) Ecological investigations of yeasts in Antarctic soils. Antarc Res Ser 30:27–34CrossRefGoogle Scholar
  11. Baharaeen S, Vishniac HS (1982) Cryptococcus lupi sp. nov., an Antarctic basidioblastomycete. Int J Syst Bacteriol 32:229–232CrossRefGoogle Scholar
  12. Baldrian P, Kolarik M, Stursova M, Kopecky J, Valaškova V, Vetrovsky T, Zifčakova L, Ridl J, Vlček C, Voriškova J (2012) Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258PubMedCrossRefGoogle Scholar
  13. Barahona S, Yuivar Y, Socias G, Alcaíno J, Cifuentes V, Baeza M (2016) Identification and characterization of yeasts isolated from sedimentary rocks of Union Glacier at the Antarctica. Extremophiles 20:479–491PubMedCrossRefGoogle Scholar
  14. Baublis JA, Wharton RA Jr, Volz PA (1991) Diversity of micro-fungi in an Antarctic dry valley. J Basic Microbiol 31:3–12PubMedCrossRefGoogle Scholar
  15. Bellemain E, Davey ML, Kauserud H, Epp LS, Boessenkool S, Coissac E, Geml J, Edwards M, Willerslev E, Gussarova G, Taberlet P, Brochmann C (2013) Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ Microbiol 15:1176–1189PubMedCrossRefGoogle Scholar
  16. Benn DI, Evans DJA (1998) Glacier and glaciation. Arnold, LondonGoogle Scholar
  17. Birgisson H, Delgado O, Garcia Arroyo L, Hatti-Kaul R, Mattiasson B (2003) Cold-adapted yeasts as producers of cold-active polygalacturonases. Extremophiles 7:185–193PubMedGoogle Scholar
  18. Blaalid R, Davey ML, Kauserud H, Carlsen T, Halvorsen R, Høiland K, Eidesen PB (2014) Arctic root-associated fungal community composition reflects environmental filtering. Mol Ecol 23:649–659PubMedCrossRefGoogle Scholar
  19. Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ (2015) Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 13:677–690PubMedCrossRefGoogle Scholar
  20. Bolignano G, Criseo G (2003) Disseminated nosocomial fungal infection by Aureobasidium pullulans var. melanogenum: a case report. J Clin Microbiol 41:4483–4485PubMedPubMedCentralCrossRefGoogle Scholar
  21. Botnen S, Vik U, Carlsen T, Eidesen PB, Davey ML, Kauserud H (2014) Low host specificity of root-associated fungi at an Arctic site. Mol Ecol 23:975–985PubMedCrossRefGoogle Scholar
  22. Branda E, Turchetti B, Diolaiuti G, Pecci M, Smiraglia C, Buzzini P (2010) Yeast and yeast-like diversity in the southernmost glacier of Europe (Calderone Glacier, Apennines, Italy). FEMS Microbiol Ecol 72:354–369PubMedCrossRefGoogle Scholar
  23. Bridge PD, Newsham KK (2009) Soil fungal community composition at Mars Oasis, a southern maritime Antarctic site, assessed by PCR amplification and cloning. Fungal Ecol 2:66–74CrossRefGoogle Scholar
  24. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234PubMedCrossRefGoogle Scholar
  25. Butinar L, Spencer-Martins I, Gunde-Cimerman N (2007) Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. A van Leeuwenhoek 91:277–289CrossRefGoogle Scholar
  26. Butinar L, Strmole T, Gunde-Cimerman N (2011) Relative incidence of ascomycetous yeasts in arctic coastal environments. Microbial Ecol 61:832–843CrossRefGoogle Scholar
  27. Buzzini P, Margesin R (2014) Cold-adapted yeasts. Springer, BerlinGoogle Scholar
  28. Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241PubMedCrossRefGoogle Scholar
  29. Byrd RE (1938) Alone: the classic polar adventure. Island Press, Washington, DCGoogle Scholar
  30. Cameron RE (1971) Antarctic soil microbial and ecological investigations. In: Quam LO, Porter HD (eds) Research in the Antarctic. AAAS, Washington, DC, pp 137–189Google Scholar
  31. Carrasco M, Rozas JM, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:251PubMedPubMedCentralCrossRefGoogle Scholar
  32. Castoria R, de Curtis F, Lima G, Caputo L, Pacifico S, de Cicco V (2001) Aureobasidium pullulans (LS30) an antagonist of postharvest pathogens of fruits: study on its modes of action. Postharvest Biol Technol 22:7–17CrossRefGoogle Scholar
  33. Catellani P, Miotti Scapin R, Alberghini L, Radu IL, Giaccone V (2014) Levels of microbial contamination of domestic refrigerators in Italy. Food Control 42:257–262CrossRefGoogle Scholar
  34. Chan GF, Bamadhaj HM, Gan HM, Rashid NAA (2012) Genome sequence of Aureobasidium pullulans AY4, an emerging opportunistic fungal pathogen with diverse biotechnological potential. Eukaryot Cell 11:1419–1420PubMedPubMedCentralCrossRefGoogle Scholar
  35. Chen SC, Meyer W, Sorrell TC (2014) Cryptococcus gattii infections. Clin Microbiol Rev 27:980–1024PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92:29–44PubMedCrossRefGoogle Scholar
  37. Chi Z, Wang F, Yue L, Liu G, Zhang T (2009) Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl Microbiol Biotechnol 82:793–804PubMedCrossRefGoogle Scholar
  38. Coleine C, Selbmann L, Ventura D’ALP, Onofri S, Zucconi L (2015) Fungal biodiversity in the alpine Tarfala Valley. Microorganisms 3:612–624PubMedPubMedCentralCrossRefGoogle Scholar
  39. Connell LB, Redman R, Craig S, Scorzetti G, Iszard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459PubMedCrossRefGoogle Scholar
  40. Connell LB, Redman R, Rodriguez R, Barrett A, Iszard M, Fonseca A (2010) Dioszegia antarctica sp. nov. and Dioszegia cryoxerica sp. nov., psychrophilic basidiomycetous yeasts from polar desert soils in Antarctica. Int J Syst Evol Microbiol 60:1466–1472PubMedCrossRefGoogle Scholar
  41. Connell LB, Rodriguez RR, Redman RS, Dalluge JJ (2014) Cold-adapted yeasts in Antarctic Deserts. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin, pp 75–98CrossRefGoogle Scholar
  42. Connell LB, Staudigel H (2013) Fungal diversity in a Dark Oligotrophic Volcanic Ecosystem (DOVE) on Mount Erebus, Antarctica. Biology 2(2):798–809Google Scholar
  43. D’Elia T, Veerapaneni R, Theraisnathan V, Rogers SO (2009) Isolation of fungi from Lake Vostok accretion ice. Mycologia 101:751–763PubMedCrossRefGoogle Scholar
  44. Davey M, Blaalid R, Vik U, Carlsen T, Kauserud H, Eidesen PB (2015) Primary succession of Bistorta vivipara (L.) Delabre (Polygonaceae) root-associated fungi mirrors plant succession in two glacial chronosequences. Environ Microbiol 17:2777–2790PubMedCrossRefGoogle Scholar
  45. de García V, Brizzio S, Libkind D, Buzzini P, Van Broock M (2007) Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiol Ecol 59:331–341PubMedCrossRefGoogle Scholar
  46. de Garcia V, Zalar P, Brizzio S, Gunde-Cimerman N, van Broock M (2012) Cryptococcus species (Tremellales) from glacial biomes in the southern (Patagonia) and northern (Svalbard) hemispheres. FEMS Microbiol Ecol 82:523–539PubMedCrossRefGoogle Scholar
  47. de Garcia V, Coelho MA, Maia TM, Ros LH, Vaz AM, Rosa CA, Sampaio JP, Goncalves P, van Broock M, Libkind D (2015) Sex in the cold: taxonomic reorganization of psychrotolerant yeasts in the order Leucosporidiales. FEMS Yeast Res 15:fov019PubMedCrossRefGoogle Scholar
  48. de Hoog GS, Zalar P, Urzì C, de Leo F, Yurlova NA, Sterflinger K (1999) Relationships of dothideaceous black yeasts and meristematic fungi based on 5.8S and ITS2 rDNA sequence comparison. Stud Mycol 43:31–37Google Scholar
  49. di Menna ME (1966a) Three new species from Antarctic soil: Candida nivalis, Candida gelida and Candida frigida spp. nov. A van Leeuwenhoek 32:25–28CrossRefGoogle Scholar
  50. di Menna ME (1966b) Yeasts in Antarctic soil. A van Leeuwenhoek 32:29–38CrossRefGoogle Scholar
  51. Dreesens LL, Lee CK, Cary SC (2014) The distribution and identity of edaphic fungi in the McMurdo Dry Valleys. Biology 3:466–483PubMedPubMedCentralCrossRefGoogle Scholar
  52. Duarte AWF, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LCS, Pessoa A, Felipe MGA, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035PubMedCrossRefGoogle Scholar
  53. Duarte AWF, Passarini AWF, Delforno TP, Pellizzari FM, Cipro CVZ, Montone RC, Petry MV, Putzke J, Rosa LH, Sette LD (2016) Yeasts from macroalgae and lichens that inhabit the South Shetland Islands, Antarctica. Environ Microbiol Rep 8:874–885CrossRefGoogle Scholar
  54. Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C, Neuveglise C, Talla E, Goffard N, Frangeul L, Aigle M, Anthouard V, Babour A, Barbe V, Barnay S, Blanchin S, Beckerich JM, Beyne E, Bleykasten C, Boisrame A, Boyer J, Cattolico L, Confanioleri F, De Daruvar A, Despons L, Fabre E, Fairhead C, Ferry-Dumazet H, Groppi A, Hantraye F, Hennequin C, Jauniaux N, Joyet P, Kachouri R, Kerrest A, Koszul R, Lemaire M, Lesur I, Ma L, Muller H, Nicaud JM, Nikolski M, Oztas S, Ozier-Kalogeropoulos O, Pellenz S, Potier S, Richard GF, Straub ML, Suleau A, Swennen D, Tekaia F, Wesolowski-Louvel M, Westhof E, Wirth B, Zeniou-Meyer M, Zivanovic I, Bolotin-Fukuhara M, Thierry A, Bouchier C, Caudron B, Scarpelli C, Gaillardin C, Weissenbach J, Wincker P, Souciet JL (2004) Genome evolution in yeasts. Nature 430:35–44PubMedCrossRefGoogle Scholar
  55. Edwards A (2015) Coming in from the cold: potential microbial threats from the terrestrial cryosphere. Front Earth Sci 3:12CrossRefGoogle Scholar
  56. Edwards A, Douglas B, Anesio AM, Rassner SM, Irvine-Fynn TDL, Sattler B, Griffith GW (2013) A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard. Fungal Ecol 6:168–176CrossRefGoogle Scholar
  57. Edwards A, Mur LA, Girdwood SE, Anesio AM, Stibal M, Rassner SM, Hell K, Pachebat JA, Post B, Bussell JS, Cameron SJ, Griffith GW, Hodson AJ, Sattler B (2014) Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiol Ecol 89:222–237PubMedCrossRefGoogle Scholar
  58. Farrell RL, Arenz BE, Duncan SM, Held BW, Jurgens JA, Blanchette RA (2011) Introduced and indigenous fungi of the Ross Island historic huts and pristine areas of Antarctica. Polar Biol 34:1669–1677CrossRefGoogle Scholar
  59. Fell JW, Hunter IL (1974) Torulopsis austromarina sp. nov. A yeast isolated from the Antarctic ocean. A van Leeuwenhoek 40:307–310CrossRefGoogle Scholar
  60. Ferrari BC, Zhang C, van Dorst J (2011) Recovering greater fungal diversity from pristine and diesel fuel contaminated sub-Antarctic soil through cultivation using both a high and a low nutrient media approach. Front Microbiol 2:217PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fiore DC, Mckee DD, Janiga MA (1997) Red snow: is it safe to eat? A pilot study. Wilderness Environ Med 8:94–95PubMedCrossRefGoogle Scholar
  62. Fonseca A, Boekhout T, Fell JW (2011) Cryptococcus Vuillemin (1901). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1661–1737Google Scholar
  63. Fonseca A, Rodrigues MG (2011) Taphrina Fries (1832). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 823–858Google Scholar
  64. Frisvad JC (2008) Fungi in cold ecosystems. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 137–156CrossRefGoogle Scholar
  65. Geml J, Morgado LN, Semenova TA, Welker JM, Walker MD, Smets E (2015) Long-term warming alters richness and composition of taxonomic and functional groups of arctic fungi. FEMS Microbiol Ecol 91:fiv095PubMedCrossRefGoogle Scholar
  66. Gesheva V, Negoita T (2012) Psychrotrophic microorganism communities in soils of Haswell Island, Antarctica, and their biosynthetic potential. Polar Biol 35:291–297CrossRefGoogle Scholar
  67. Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128PubMedCrossRefGoogle Scholar
  68. Gilichinsky DA, Wilson GS, Friedmann EI, McKay CP, Sletten RS, Rivkina EM, Vishnivetskaya TA, Erokhina LG, Ivanushkina NE, Kochkina GA, Shcherbakova VA, Soina VS, Spirina EV, Vorobyova EA, Fyodorov-Davydov DG, Hallet B, Ozerskaya SM, Sorokovikov VA, Laurinavichyus KS, Shatilovich AV, Chanton JP, Ostroumov VE, Tiedje JM (2007) Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7:275–311PubMedCrossRefGoogle Scholar
  69. Gittel A, Bárta J, Kohoutová I, Mikutta R, Owens S, Gilbert J, Schnecker J, Wild B, Hannisdal B, Maerz J, Lashchinskiy N, Capek P, Santrůčková H, Gentsch N, Shibistova O, Guggenberger G, Richter A, Torsvik VL, Schleper C, Urich T (2014) Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J 8:841–853PubMedCrossRefGoogle Scholar
  70. Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NS, Pupo D, Alves TMA, Junior PAS, Romanha AJ, Zani CL, Cantrell CL, Rosa CA, Rosa LH (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451PubMedPubMedCentralCrossRefGoogle Scholar
  71. Golubev WI (1998) New species of basidiomycetous yeasts, Rhodotorula creatinovora and R. yakutica, isolated from permafrost soils of Eastern-Siberian Arctic. Mykol Phytopathol 32:8–13Google Scholar
  72. Goncalves VN, Carvalho CR, Johann S, Mendes G, Alves TMA, Zani CL, Junior PAS, Murta SMF, Romanha AJ, Cantrell CL, Rosa CA, Rosa LH (2015) Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol 38:1143–1152CrossRefGoogle Scholar
  73. Goordial J, Davila A, Lacelle D, Pollard W, Marinova MM, Greer CW, DiRuggiero J, McKay CP, Whyte LG (2016) Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J 10:1613–1624PubMedPubMedCentralCrossRefGoogle Scholar
  74. Gostinčar C, Turk M, Trbuha T, Vaupotič T, Plemenitaš A, Gunde-Cimerman N (2008) Expression of fatty-acid-modifying enzymes in the halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress. Stud Mycol 61:51–59PubMedPubMedCentralCrossRefGoogle Scholar
  75. Gostinčar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11PubMedCrossRefGoogle Scholar
  76. Gostinčar C, Grube M, Gunde-Cimerman N (2011) Evolution of fungal pathogens in domestic environments. Fungal Biol 115:1008–1018PubMedCrossRefGoogle Scholar
  77. Gostinčar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15:549PubMedPubMedCentralCrossRefGoogle Scholar
  78. Goto S, Sugiyama J, Iizuka H (1969) A taxonomic study of Antarctic yeasts. Mycologia 61:748–774PubMedCrossRefGoogle Scholar
  79. Gounot AM (1986) Psychrophilic and psychrotrophic microorganisms. Experientia 42:1192–1197PubMedCrossRefGoogle Scholar
  80. Guffogg SP, Thomas-Hall SR, Holloway P, Watson K (2004) A novel psychrotolerant member of the hymenomycetous yeasts from Antarctica: Cryptococcus watticus sp. nov. Int J Syst Evol Microbiol 54:275–277PubMedCrossRefGoogle Scholar
  81. Gunde-Cimerman N, Zalar P, de Hoog GS, Plemenitaš A (2000) Hypersaline waters in salterns-natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240Google Scholar
  82. Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitaš A (2003) Extremophilic fungi in Arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278CrossRefGoogle Scholar
  83. Gunde-Cimerman N, Plemenitaš A, Buzzini P (2014) Change in lipids composition and fluidity of yeast plasma membrane as response to cold. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin, pp 225–242CrossRefGoogle Scholar
  84. Henriquez M, Vergara K, Norambuena J, Beiza A, Maza F, Ubilla P, Araya I, Chavez R, San-Martin A, Darias J, Darias MJ, Vaca I (2014) Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J Microbiol Biotechnol 30:65–76PubMedCrossRefGoogle Scholar
  85. Holdgate MW (1977) Terrestrial ecosystems in the Antarctic. Philos Trans R Soc Lond B Biol Sci 279:5–25CrossRefGoogle Scholar
  86. Irvine-Fynn TD, Edwards A (2014) A frozen asset: the potential of flow cytometry in constraining the glacial biome. Cytometry A 85:3–7PubMedCrossRefGoogle Scholar
  87. Jacobs MPH, Shafer JC (1964) Studies of fungi at Amundsen-Scott IGY South Polar Base. Arch Dermatol 89:177–183CrossRefGoogle Scholar
  88. Jacques N, Zenouche A, Gunde-Cimerman N, Casaregola S (2015) Increased diversity in the genus Debaryomyces from Arctic glacier samples. A van Leeuwenhoek 107:487–501CrossRefGoogle Scholar
  89. Jones GEB (1976) Recent advances in aquatic mycology. The Gresham Press, Old Woking, SurreyGoogle Scholar
  90. Kachalkin AV (2010) New data on the distribution of certain psychrophilic yeasts in Moscow oblast. Microbiology 79:843–847PubMedCrossRefGoogle Scholar
  91. Kachalkin AV (2014) Yeasts of the White Sea intertidal zone and description of Glaciozyma litorale sp. nov. A van Leeuwenhoek 105:1073–1083CrossRefGoogle Scholar
  92. Kim HJ, Shim HE, Lee JH, Kang YC, Hur YB (2015) Ice-binding protein derived from Glaciozyma can improve the viability of cryopreserved mammalian cells. J Microbiol Biotechnol 25:1989–1996PubMedCrossRefGoogle Scholar
  93. Knowlton C, Veerapaneni R, Rogers SO (2013) Microbial analyses of ancient ice core sections from Greenland and Antarctica. Biology 2:206–232PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kochkina G, Ivanushkina N, Ozerskaya S, Chigineva N, Vasilenko O, Firsov S, Spirina E, Gilichinsky D (2012) Ancient fungi in Antarctic permafrost environments. FEMS Microbiol Ecol 82:501–509PubMedCrossRefGoogle Scholar
  95. Krishnan A, Alias SA, Wong CMVL, Pang K-L, Convey P (2011) Extracellular hydrolase enzyme production by soil fungi from King George Island, Antarctica. Polar Biol 34:1535–1542CrossRefGoogle Scholar
  96. Kurtzman CP (2011) Pichia E.C. Hansen (1904). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 685–707Google Scholar
  97. Kurtzman CP, Mateo RQ, Kolecka A, Theelen B, Robert V, Boekhout T (2015) Advances in yeast systematics and phylogeny and their use as predictors of biotechnologically important metabolic pathways. FEMS Yeast Res 15:fov050PubMedCrossRefGoogle Scholar
  98. Laich F, Vaca I, Chavez R (2013) Rhodotorula portillonensis sp. nov., a basidiomycetous yeast isolated from Antarctic shallow-water marine sediment. Int J Syst Evol Microbiol 63:3884–3891PubMedCrossRefGoogle Scholar
  99. Laich F, Chàvez R, Vaca I (2014) Leucosporidium escuderoi f.a., sp. nov., a basidiomycetous yeast associated with an Antarctic marine sponge. A van Leeuwenhoek 105:593–601CrossRefGoogle Scholar
  100. Libkind D, Moline M, Sampaio JP, van Broock M (2009) Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69:353–362PubMedCrossRefGoogle Scholar
  101. Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147PubMedCrossRefGoogle Scholar
  102. Loperena L, Soria V, Varela H, Lupo S, Bergalli A, Guigou M, Pellegrino A, Bernardo A, Calvino A, Rivas F, Batista S (2012) Extracellular enzymes produced by microorganisms isolated from maritime Antarctica. World J Microbiol Biotechnol 28:2249–2256PubMedCrossRefGoogle Scholar
  103. Ludley KE, Robinson CH (2008) “Decomposer” basidiomycota in Arctic and Antarctic ecosystems. Soil Biol Biochem 40:11–29CrossRefGoogle Scholar
  104. Lutz S, Anesio AM, Edwards A, Benning LG (2016) Linking microbial diversity and functionality of arctic glacial surface habitats. Environ Microbiol. doi: 10.1111/1462-2920.13494
  105. Ma LJ, Catranis CM, Starmer WT, Rogers SO (1999) Revival and characterization of fungi from ancient polar ice. Mycologist 13:70–73CrossRefGoogle Scholar
  106. Maccario L, Vogel TM, Larose C (2014) Potential drivers of microbial community structure and function in Arctic spring snow. Front Microbiol 5:413PubMedPubMedCentralCrossRefGoogle Scholar
  107. Maraz A, Kovacs M (2014) Food spoilage by cold-adapted yeasts. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin, pp 497–532CrossRefGoogle Scholar
  108. Margesin R (2008) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles. 13:257–262PubMedCrossRefGoogle Scholar
  109. Margesin R, Fell JW (2008) Mrakiella cryoconiti gen. nov., sp. nov., a psychrophilic, anamorphic, basidiomycetous yeast from Alpine and Arctic habitats. Int J Syst Evol Microbiol 58:2977–2982PubMedCrossRefGoogle Scholar
  110. Margesin R, Fonteyne PA, Schinner F, Sampaio JP (2007) Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments. Int J Syst Evol Microbiol 57:2179–2184PubMedCrossRefGoogle Scholar
  111. Martinez A, Cavello I, Garmendia G, Rufo C, Cavalitto S, Vero S (2016) Yeasts from sub-Antarctic region: biodiversity, enzymatic activities and their potential as oleaginous microorganisms. Extremophiles 20:759–769PubMedCrossRefGoogle Scholar
  112. Mittelbach M, Vannette RL (2017) Mutualism in yeasts. In: Buzzini P, Lachance MA, Yurkov AM (eds) Yeasts in natural ecosystems: ecology. Springer, Heidelberg, pp 155–178Google Scholar
  113. Montes MJ, Belloch C, Galiana M, Garcia MD, Andres C, Ferrer S, Torres-Rodriguez JM, Guinea J (1999) Polyphasic taxonomy of a novel yeast isolated from Antarctic environment: description of Cryptococcus victoriae sp. nov. Syst Appl Microbiol 22:97–110PubMedCrossRefGoogle Scholar
  114. Nesje A, Dahl SV (2000) Glaciers and environmental change. Arnold, LondonGoogle Scholar
  115. Newell SY, Fell JW (1970) The perfect form of a marine occurring yeast of the genus Rhodotorula. Mycologia 62:272–281CrossRefGoogle Scholar
  116. NSF International (2013) The Public Health and Safety Organization, Household Germ Study. Accessed 21 Nov 2016 (password protected)
  117. Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237CrossRefGoogle Scholar
  118. Onofri S, Zucconi L, Tosi S (2007) Continental Antarctic fungi. IHW-Verlag, Eching, GermanyGoogle Scholar
  119. Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JPP, Hatton J, Zucconi L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud Mycol 61:99–109PubMedPubMedCentralCrossRefGoogle Scholar
  120. Osono T, Ueno T, Uchida M, Kanda H (2012) Abundance and diversity of fungi in relation to chemical changes in arctic moss profiles. Polar Sci 6:121–131CrossRefGoogle Scholar
  121. Ozerskaya SM, Kochkina GA, Ivanushkina NE, Knyazeva EV, Gilichinskii DA (2008) The structure of micromycete complexes in permafrost and cryopegs of the Arctic. Microbiology 77:482–489CrossRefGoogle Scholar
  122. Pathan AAK, Bhadra B, Begum Z, Shivaji S (2010) Diversity of yeasts from puddles in the vicinity of Midre Lovenbreen Glacier, Arctic and bioprospecting for enzymes and fatty acids. Curr Microbiol 60:307–314PubMedCrossRefGoogle Scholar
  123. Pavlova K, Angelova G, Savova I, Grigorova D, Kupenov L (2002) Studies of Antarctic yeast for b-glucosidase production. World J Microbiol Biotechnol 18:569–573CrossRefGoogle Scholar
  124. Pavlova K, Panchev I, Krachanova M, Gocheva M (2009) Production of an exopolysaccharide by Antarctic yeast. Folia Microbiol 54:343–348CrossRefGoogle Scholar
  125. Petrescu I, Lamotte-Brasseur J, Chessa JP, Ntarima P, Claeyssens M, Devreese B, Marino G, Gerday C (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4:137–144PubMedCrossRefGoogle Scholar
  126. Pfeffer WT, Arendt AA, Bliss A, Bolch T, Cogley JG, Gardner AS, Hagen J-O, Hock R, Kaser G, Kienholz C, Miles ES, Moholdt G, Mölg N, Paul F, Radić V, Rastner P, Raup BH, Rich J, Sharp M (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J Glaciol 60:537–552CrossRefGoogle Scholar
  127. Pitt JI, Hocking AD (1999) Fungi and food spoilage, 2nd edn. Aspen Publishers, Gaithersburg, MDGoogle Scholar
  128. Poli A, Anzelmo G, Tommonaro G, Pavlova K, Casaburi A, Nicolaus B (2010) Production and chemical characterization of an exopolysaccharide synthesized by psychrophilic yeast strain Sporobolomyces salmonicolor AL1 isolated from Livingston Island, Antarctica. Folia Microbiol 55:576–581CrossRefGoogle Scholar
  129. Price NP, Manitchotpisit P, Vermillion KE, Bowman MJ, Leathers TD (2013) Structural characterization of novel extracellular liamocins (mannitol oils) produced by Aureobasidium pullulans strain NRRL 50380. Carbohydr Res 370:24–32PubMedCrossRefGoogle Scholar
  130. Rämä T, Davey ML, Nordén J, Halvorsen R, Blaalid R, Mathiassen GH, Alsos IG, Kauserud H (2016) Fungi sailing the Arctic ocean: speciose communities in North Atlantic driftwood as revealed by high-throughput amplicon sequencing. Microb Ecol 72:295–304PubMedCrossRefGoogle Scholar
  131. Ray MK, Devi KU, Kumar GS, Shivaji S (1992) Extracellular protease from the antarctic yeast Candida humicola. Appl Environ Microbiol 58:1918–1923PubMedPubMedCentralGoogle Scholar
  132. Revich B, Tokarevich N, Parkinson AJ (2012) Climate change and zoonotic infections in the Russian Arctic. Int J Circumpolar Health 71:18792CrossRefGoogle Scholar
  133. Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353CrossRefGoogle Scholar
  134. Rovati JI, Pajot HF, Ruberto L, Mac Cormack W, Figueroa LIC (2013) Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica). Yeast 30:459–470PubMedCrossRefGoogle Scholar
  135. Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141CrossRefGoogle Scholar
  136. Salkin IF, Martinez JA, Kemna ME (1986) Opportunistic infection of the spleen caused by Aureobasidium pullulans. J Clin Microbiol 23:828–831PubMedPubMedCentralGoogle Scholar
  137. Sampaio JP (2011) Rhodotorula Harrison (1928). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1873–1927Google Scholar
  138. Santiago IF, Soares MA, Rosa CA, Rosa LH (2015) Lichensphere: a protected natural microhabitat of the non-lichenised fungal communities living in extreme environments of Antarctica. Extremophiles 19:1087–1097PubMedCrossRefGoogle Scholar
  139. Scorzetti G, Petrescu I, Yarrow D, Fell JW (2000) Cryptococcus adeliensis sp. nov., a xylanase producing basidiomycetous yeast from Antarctica. A van Leeuwenhoek 77:153–157CrossRefGoogle Scholar
  140. Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32Google Scholar
  141. Selbmann L, de Hoog GS, Zucconi L, Isola D, Ruisi S, van den Ende AH, Ruibal C, De Leo F, Urzi C, Onofri S (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20PubMedPubMedCentralCrossRefGoogle Scholar
  142. Selbmann L, Zucconi L, Onofri S, Cecchini C, Isola D, Turchetti B, Buzzini P (2014a) Taxonomic and phenotypic characterization of yeasts isolated from worldwide cold rock-associated habitats. Fungal Biol 118:61–71PubMedCrossRefGoogle Scholar
  143. Selbmann L, Turchetti B, Yurkov A, Cecchini C, Zucconi L, Isola D, Buzzini P, Onofri S (2014b) Description of Taphrina antarctica f.a. sp. nov., a new anamorphic ascomycetous yeast species associated with Antarctic endolithic microbial communities and transfer of four Lalaria species in the genus Taphrina. Extremophiles 18:707–721PubMedCrossRefGoogle Scholar
  144. Selbmann L, de Hoog GS, Zucconi L, Isola D, Onofri S (2014c) Black yeasts in cold habitats. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin, pp 173–189CrossRefGoogle Scholar
  145. Semenova TA, Morgado LN, Welker JM, Walker MD, Smets E, Geml J (2016) Compositional and functional shifts in arctic fungal communities in response to experimentally increased snow depth. Soil Biol Biochem 100:201–209CrossRefGoogle Scholar
  146. Shivaji S, Prasad GS (2009) Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Berlin, pp 3–16CrossRefGoogle Scholar
  147. Shtarkman YM, Kocer ZA, Edgar R, Veerapaneni RS, D’Elia T, Morris PF, Rogers SO (2013) Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya. PLoS One 8:e67221PubMedPubMedCentralCrossRefGoogle Scholar
  148. Siddiqui KS, Cavicchioli R (2005) Improved thermal stability and activity in the cold-adapted lipase B from Candida antarctica following chemical modification with oxidized polysaccharides. Extremophiles 9:471–476PubMedCrossRefGoogle Scholar
  149. Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75:7519–7526PubMedPubMedCentralCrossRefGoogle Scholar
  150. Singh P, Singh SM, Tsuji M, Prasad GS, Hoshino T (2014) Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Alesund, Arctic. Cryobiology 68:122–128PubMedCrossRefGoogle Scholar
  151. Singh SM, Tsuji M, Gawas-Sakhalker P, Loonen MJJE, Hoshino T (2016) Bird feather fungi from Svalbard Arctic. Polar Biol 39:523–532CrossRefGoogle Scholar
  152. Soneda M (1961) On some yeasts from the Antarctic region. Special Publ Seto Marine Biol Lab Sirahama, Wakayama-Ken, Japan, pp 3–10Google Scholar
  153. Takesako K, Ikai K, Haruna F, Endo M, Shimanaka K, Sono E, Nakamura T, Kato I, Yamaguchi H (1991) Aureobasidins, new antifungal antibiotics taxonomy, fermentation, isolation, and properties. J Antibiot (Tokyo) 44:919–924CrossRefGoogle Scholar
  154. Thomas-Hall SR, Watson K (2002) Cryptococcus nyarrowii sp. nov., a basidiomycetous yeast from Antarctica. Int J Syst Evol Microbiol 52:1033–1103PubMedGoogle Scholar
  155. Thomas-Hall SR, Watson K, Scorzetti G (2002) Cryptococcus statzelliae sp. nov. and three novel strains of Cryptococcus victoriae, yeasts isolated from Antarctic soils. Int J Syst Evol Microbiol 52:2303–2308PubMedGoogle Scholar
  156. Thomas-Hall SR, Turchetti B, Buzzini P, Branda E, Boekhout T, Theelen B, Watson K (2010) Cold adapted yeasts from Antarctica and the Italian Alps. Description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59PubMedCrossRefGoogle Scholar
  157. Timling I, Walker DA, Nusbaum C, Lennon NJ, Taylor DL (2014) Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Mol Ecol 23:3258–3272PubMedCrossRefGoogle Scholar
  158. Tsuji M (2016) Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis. R Soc Open Sci 3:160106PubMedPubMedCentralCrossRefGoogle Scholar
  159. Tsuji M, Fujiu S, Xiao N, Hanada Y, Kudoh S, Kondo H, Tsuda S, Hoshino T (2013) Cold adaptation of fungi obtained from soil and lake sediment in the Skarvsnes ice-free area, Antarctica. FEMS Microbiol Lett 346:121–130PubMedCrossRefGoogle Scholar
  160. Tsuji M, Yokota Y, Kudoh S, Hoshino T (2015) Comparative analysis of milk fat decomposition activity by Mrakia spp. isolated from Skarvsnes ice-free area, East Antarctica. Cryobiology 70:293–296PubMedCrossRefGoogle Scholar
  161. Tsuji M, Uetake J, Tanabe Y (2016) Changes in the fungal community of Austre Brøggerbreen deglaciation area, Ny-Ålesund, Svalbard, High Arctic. Mycoscience 57:448–451CrossRefGoogle Scholar
  162. Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C, Smiraglia C, Vaughan-Martini A (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83PubMedCrossRefGoogle Scholar
  163. Turchetti B, Thomas-Hall SR, Connell LB, Branda E, Buzzini P, Theelen B, Muller WH, Boekhout T (2011) Psychrophilic yeasts from Antarctica and European glaciers: description of Glaciozyma gen. nov., Glaciozyma martinii sp. nov. and Glaciozyma watsonii sp. nov. Extremophiles 15:573–586PubMedCrossRefGoogle Scholar
  164. Turchetti B, Selbmann L, Blanchette RA, Di Mauro S, Marchegiani E, Zucconi L, Arenz BE, Buzzini P (2015) Cryptococcus vaughanmartiniae sp. nov. and Cryptococcus onofrii sp. nov.: two new species isolated from worldwide cold environments. Extremophiles 19:149–159PubMedCrossRefGoogle Scholar
  165. Turk M, Plemenitaš A, Gunde-Cimerman N (2011) Extremophilic yeasts: plasma-membrane fluidity as determinant of stress tolerance. Fungal Biol 115:950–958PubMedCrossRefGoogle Scholar
  166. Turkiewicz M, Pazgier M, Kalinowska H, Bielecki S (2003) A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles 7:435–442PubMedCrossRefGoogle Scholar
  167. Turkiewicz M, Pazgier M, Donachie SP, Kalinowska H (2005) Invertase and a-glucosidase production by the endemic Antarctic marine yeast Leucosporidium antarcticum. Pol Polar Res 26:125–136Google Scholar
  168. Uetake J, Yoshimura Y, Nagatsuka N, Kanda H (2012) Isolation of oligotrophic yeasts from supraglacial environments of different altitude on the Gulkana Glacier (Alaska). FEMS Microbiol Ecol 82:279–286PubMedCrossRefGoogle Scholar
  169. Vaca I, Faundez C, Maza F, Paillavil B, Hernandez V, Acosta F, Levican G, Martinez C, Chavez R (2013) Cultivable psychrotolerant yeasts associated with Antarctic marine sponges. World J Microbiol Biotechnol 29:183–189PubMedCrossRefGoogle Scholar
  170. Vaz ABM, Rosa LH, Vieira MLA, de Garcia V, Brandão LR, Teixeira LCRS, Moliné M, Libkind D, van Broock M, Rosa CA (2011) The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz J Microbiol 42:937–947PubMedPubMedCentralCrossRefGoogle Scholar
  171. Vishniac HS (1985a) Cryptococcus socialis sp. nov. and Cryptococcus consortionis sp. nov., Antarctic basidioblastomycetes. Int J Syst Bacteriol 35:119–122PubMedCrossRefGoogle Scholar
  172. Vishniac HS (1985b) Cryptococcus friedmannii, a new species of yeast from the Antarctic. Mycologia 77:149–153PubMedCrossRefGoogle Scholar
  173. Vishniac HS (1996) Biodiversity of yeasts and filamentous microfungi in terrestrial Antarctic ecosystems. Biodivers Conserv 5:1365–1378CrossRefGoogle Scholar
  174. Vishniac HS (2002) Cryptococcus tephrensis, sp. nov., and Cryptococcus heimaeyensis, sp. nov.; new anamorphic basidiomycetous yeast species from Iceland. Can J Microbiol 48:463–467PubMedCrossRefGoogle Scholar
  175. Vishniac HS (2006a) A multivariate analysis of soil yeasts isolated from a latitudinal gradient. Microb Ecol 52:90–103PubMedCrossRefGoogle Scholar
  176. Vishniac HS (2006b) Yeast biodiversity in the Antarctic. In: Rosa C, Gabor P (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 419–440CrossRefGoogle Scholar
  177. Vishniac HS, Hempfling WP (1979) Cryptococcus vishniacii sp. nov., an Antarctic yeast. Int J Syst Bacteriol 29:153–158CrossRefGoogle Scholar
  178. Vishniac HS, Kurtzman CP (1992) Cryptococcus antarcticus sp. nov, and Cryptococcus albidosimilis sp. nov., basidioblastomycetes from antarctic soils. Int J Syst Bacteriol 42:547–553CrossRefGoogle Scholar
  179. Vishniac HS, Onofri S (2002) Cryptococcus antarcticus var. circumpolaris var. nov., a basidiomycetous yeast from Antarctica. A van Leeuwenhoek 83:231–233CrossRefGoogle Scholar
  180. Vishniac HS, Takashima M (2010) Rhodotorula arctica sp. nov., a basidiomycetous yeast from Arctic soil. Int J Syst Evol Microbiol 60:1215–1218PubMedCrossRefGoogle Scholar
  181. Wang QM, Yurkov AM, Göker M, Lumbsch HT, Leavitt SD, Groenewald M, Theelen B, Liu XZ, Boekhout T, Bai FY (2015) Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol 81:149–189PubMedCrossRefGoogle Scholar
  182. Xiao N, Inaba S, Tojo M, Degawa Y, Fujiu S, Hanada Y, Kudoh S, Hoshino T (2010) Antifreeze activities of various fungi and Stramenophilia isolated from Antarctica. N Am Fungi 5:215–220Google Scholar
  183. Xin M, Zhou P (2007) Mrakia psychrophila sp. nov., a new species isolated from Antarctic soil. J Zhejiang Univ Sci B 8:260–265PubMedPubMedCentralCrossRefGoogle Scholar
  184. Yurkov AM (2017) Temporal and geographic patterns in yeast distribution. In: Buzzini P, Lachance MA, Yurkov AM (eds) Yeasts in natural ecosystems: ecology. Springer, Heidelberg, pp 101–130Google Scholar
  185. Yurkov A, Inacio J, Chernov IY, Fonseca A (2015a) Yeast biogeography and the effects of species recognition approaches: the case study of widespread basidiomycetous species from birch forests in Russia. Curr Microbiol 70:587–601PubMedCrossRefGoogle Scholar
  186. Yurkov A, Kachalkin AV, Daniel HM, Groenewald M, Libkind D, de Garcia V, Zalar P, Gouliamova DE, Boekhout T, Begerow D (2015b) Two yeast species Cystobasidium psychroaquaticum f.a. sp. nov. and Cystobasidium rietchieii f.a. sp. nov. isolated from natural environments, and the transfer of Rhodotorula minuta clade members to the genus Cystobasidium. A van Leeuwenhoek 107:173–185CrossRefGoogle Scholar
  187. Zalar P, Gunde-Cimerman N (2014) Cold-adapted yeasts in Arctic habitats. In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin, pp 49–74CrossRefGoogle Scholar
  188. Zalar P, Gostinčar C, De Hoog GS, Uršič V, Sudhadham M, Gunde-Cimerman N (2008) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38PubMedPubMedCentralCrossRefGoogle Scholar
  189. Zalar P, Novak M, De Hoog GS, Gunde-Cimerman N (2011) Dishwashers – A man-made ecological niche accommodating human opportunistic fungal pathogens. Fungal Biol 115:997–1007PubMedCrossRefGoogle Scholar
  190. Zhang T, Yao Y-F (2015) Endophytic fungal communities associated with vascular plants in the high Arctic zone are highly diverse and host-plant specific. PLoS One 10:e0130051PubMedPubMedCentralCrossRefGoogle Scholar
  191. Zhang T, Zhang YQ, Liu HY, Su J, Zhao LX, Yu LY (2014) Cryptococcus fildesensis sp. nov., a psychrophilic basidiomycetous yeast isolated from Antarctic moss. Int J Syst Evol Microbiol 64:675–679PubMedCrossRefGoogle Scholar
  192. Zhang T, Wei XL, Zhang YQ, Liu HY, Yu LY (2015a) Diversity and distribution of lichen-associated fungi in the Ny-Ålesund Region (Svalbard, High Arctic) as revealed by 454 pyrosequencing. Sci Rep 5:14850PubMedPubMedCentralCrossRefGoogle Scholar
  193. Zhang T, Wang NF, Zhang YQ, Liu HY, Yu LY (2015b) Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic). Sci Rep 5:14524PubMedPubMedCentralCrossRefGoogle Scholar
  194. Zucconi L, Selbmann L, Buzzini P, Turchetti B, Guglielmin M, Frisvad JC, Onofri S (2012) Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol 35:749–757CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pietro Buzzini
    • 1
  • Martina Turk
    • 2
  • Laura Perini
    • 2
  • Benedetta Turchetti
    • 1
  • Nina Gunde-Cimerman
    • 2
    Email author
  1. 1.Department of Agricultural, Food and Environmental SciencesUniversity of PerugiaPerugiaItaly
  2. 2.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations