Skip to main content

Yeasts in Hypersaline Habitats

  • Chapter
  • First Online:

Abstract

For a long time, halotolerant yeasts were known exclusively as contaminants of food preserved with high concentrations of salt or sugar. Their presence in natural thalassohaline hypersaline environments was unknown until 2000, when they were first reported to be active inhabitants of man-made solar salterns in Slovenia. Since then, they have been described on the surface of halophytic plants, in salt mines, in cold and temperate saline lakes, in brine and bittern of different solar salterns on three continents and in MgCl2-dominated waters of the Dead Sea. Yeasts in these environments can be described as halotolerant, extremely halotolerant and even extremely chaotolerant. The dominant representatives are different ascomycetous black yeast species, mainly of the genera Hortaea and Phaeotheca; non-melanised ascomycetous yeasts from the genera Candida, Debaryomyces, Meyerozyma, Metschnikowia, Pichia and Yarrowia; and basidiomycetous yeasts from the genera Bulleromyces, Cryptococcus, Cutaneotrichosporon, Papiliotrema, Rhodosporidium, Rhodotorula, Solicoccozyma, Sterigmatomyces and Vishniacozyma. Until the discovery and description of indigenous saltern mycobiota, the physiological and molecular mechanisms relating to salt tolerance in eukaryotic microorganisms were studied using salt-sensitive Saccharomyces cerevisiae as the model organism. Nowadays, most studies focus on halotolerant yeast species like Debaryomyces hansenii, Aureobasidium pullulans and Hortaea werneckii, which have been isolated globally from natural hypersaline environments and can tolerate up to 10%, 15% and 30% NaCl, respectively. Studies of halotolerant yeasts at the molecular level continue to unravel the complexity of the adaptations needed for yeasts to cope with the problems of ion toxicity and low water activity that are characteristic of hypersaline environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamiak J, Otlewska A, Gutarowska B, Pietrzak A (2016) Halophilic microorganisms in deteriorated historic buildings: insights into their characteristics. Acta Biochim Pol 63:335–341

    Article  CAS  PubMed  Google Scholar 

  • Aguiar C, Lucas C (2000) Yeasts killer/sensitivity phenotypes and halotolerance. Food Technol Biotechnol 38:39–46

    CAS  Google Scholar 

  • Alexander E, Stock A, Breiner HW, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microbiol 11:360–381

    Article  CAS  PubMed  Google Scholar 

  • Ali I, Kanhayuwa L, Rachdawong S, Rakshit SK (2013) Identification, phylogenetic analysis and characterization of obligate halophilic fungi isolated from a man-made solar saltern in Phetchaburi province, Thailand. Ann Microbiol 63:887–895

    Article  Google Scholar 

  • Almagro A, Prista C, Castro S, Quintas C, Madeira-Lopes A, Ramos J, Loureiro-Dias MC (2000) Effects of salts on Debaryomyces hansenii and Saccharomyces cerevisiae under stress conditions. Int J Food Microbiol 56:191–197

    Article  CAS  PubMed  Google Scholar 

  • Al-Musallam AAS, Al-Sammar HF, Al-Sané NA (2010) Diversity and dominance of fungi inhabiting the sabkha area in Kuwait. Bot Mar 54:83–94

    Google Scholar 

  • Andre L, Nilsson A, Adler L (1988) The role of glycerol in osmotolerance of the yeast Debaryomyces hansenii. J Gen Microbiol 134:669–677

    CAS  Google Scholar 

  • Andrews JH, Spear RN, Nordheim EV (2002) Population biology of Aureobasidium pullulans on apple leaf surfaces. Can J Microbiol 48:500–513

    Article  CAS  PubMed  Google Scholar 

  • Arino J, Ramos J, Sychrova H (2010) Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev 74:95–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahn YS (2008) Master and commander in fungal pathogens: the two-component system and the HOG signaling pathway. Eukaryot Cell 7:2017–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blomberg A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182:1–8

    Article  CAS  PubMed  Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212

    Article  CAS  PubMed  Google Scholar 

  • Bonifaz A, Badali H, de Hoog GS, Cruz M, Araiza J, Cruz MA, Fierro L, Ponce RM (2008) Tinea nigra by Hortaea werneckii, a report of 22 cases from Mexico. Stud Mycol 61:77–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgaud G, Arzur D, Durand L, Cambon-Bonavita MA, Barbier G (2010) Marine culturable yeasts in deep-sea hydrothermal vents: diversity and association with fauna. FEMS Microbiol Ecol 73:121–133

    CAS  PubMed  Google Scholar 

  • Burgaud G, Huéb NTM, Arzur D, Coton M, Perrier-Cornet JM, Jebbar M, Barbier G (2015) Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents. Res Microbiol 166:700–709

    Article  PubMed  Google Scholar 

  • Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005a) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48:73–79

    Article  Google Scholar 

  • Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005b) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Zalar P, Frisvad JC, Gunde-Cimerman N (2005c) The genus Eurotium – members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol 51:155–166

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Spencer-Martins I, Gunde-Cimerman N (2007) Yeasts in high Arctic glaciers: the discovery of a new habitat for eukaryotic microorganisms. A van Leeuwenhoek 91:277–289

    Article  Google Scholar 

  • Butinar L, Frisvad JC, Gunde-Cimerman N (2011a) Hypersaline waters – a potential source of foodborne toxigenic Aspergilli and Penicillia. FEMS Microbiol Ecol 77:186–199

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Strmole T, Gunde-Cimerman N (2011b) Relative incidence of ascomycetous yeasts in arctic coastal environments. Microb Ecol 61:832–843

    Article  PubMed  Google Scholar 

  • Buzzini P, Martini A (2002) Extracellular enzymatic activity profiles in yeast and yeast-like strains isolated from tropical environments. J Appl Microbiol 93:1020–1025

    Article  CAS  PubMed  Google Scholar 

  • Cabañes FJ, Bragulat MR, Castellá G (2012) Hortaea werneckii isolated from silicone scuba diving equipment in Spain. Med Mycol 50:852–857

    Article  PubMed  Google Scholar 

  • Cantrell SA, Casillas-MartiNez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110:962–970

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Martinez DA, Gujja S, Sykes SM, Zeng Q, Szaniszlo PJ, Wang Z, Cuomo CA (2014) Comparative genomic and transcriptomic analysis of Wangiella dermatitidis, a major cause of phaeohyphomycosis and a model black yeast human pathogen. Genes Gen Genet 4:561–578

    CAS  Google Scholar 

  • Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92:29–44

    Article  CAS  PubMed  Google Scholar 

  • Chi ZM, Wang F, Chi Z, Yue L, Liu G, Zhang T (2009) Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl Microbiol Biotechnol 82:793–804

    Article  CAS  PubMed  Google Scholar 

  • Crognale S, Pesciaroli L, Petruccioli M, D’Annibale A (2012) Phenoloxidase-producing halotolerant fungi from olive brine wastewater. Process Biochem 47:1433–1437

    Article  CAS  Google Scholar 

  • Cronin AE, Post FJ (1977) Report of a dematiaceous Hyphomycetes from the Great Salt Lake, Utah. Mycologia 69:846–847

    Article  CAS  PubMed  Google Scholar 

  • Crous PW, Wingfield MJ, Richardson DM, Leroux JJ, Strasberg D, Edwards J, Roets F, Hubka V, Taylor PWJ, Heykoop M, Martín MP, Moreno G, Sutton DA, Wiederhold NP, Barnes CW, Carlavilla JR, Gené J, Giraldo A, Guarnaccia V, Guarro J, Hernández-Restrepo M, Kolařík M, Manjón JL, Pascoe IG, Popov ES, Sandoval-Denis M, Woudenberg JHC, Acharya K, Alexandrova AV, Alvarado P, Barbosa RN, Baseia IG, Blanchette RA, Boekhout T, Burgess TI, Cano-Lira JF, Čmoková A, Dimitrov RA, Dyakov MY, Dueñas M, Dutta AK, Esteve-Raventós F, Fedosova AG, Fournier J, Gamboa P, Gouliamova DE, Grebenc T, Groenewald M, Hanse B, Hardy GESTJ, Held BW, Jurjević Ž, Kaewgrajang T, Latha KPD, Lombard L, Luangsa-ard JJ, Lysková P, Mallátová N, Manimohan P, Miller AN, Mirabolfathy M, Morozova OV, Obodai M, Oliveira NT, Ordóñez ME, Otto EC, Paloi S, Peterson SW, Phosri C, Roux J, Salazar WA, Sánchez A, Sarria GA, Shin H-D, Silva BDB, Silva GA, Smith MTH, Souza-Motta CM, Stchigel AM, Stoilova-Disheva MM, Sulzbacher MA, Telleria MT, Toapanta C, Traba JM, Valenzuela-Lopez N, Watling R, Groenewald JZ (2016) Fungal Planet description sheets: 400–468. Persoonia 36:316–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva S, Calado S, Lucas C, Aguiar C (2008) Unusual properties of the halotolerant yeast Candida nodaensis Killer toxin, CnKT. Microbiol Res 163:243–251

    Article  PubMed  CAS  Google Scholar 

  • Dakal TC, Solieri L, Giudici P (2014) Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii. Int J Food Microbiol 185:140–157

    Article  CAS  PubMed  Google Scholar 

  • de Hoog GS, Guého E (2010) White Piedra, Black Piedra, and Tinea Nigra. Topley & Wilson’s Microbiology and Microbial Infections. Wiley

    Google Scholar 

  • de Hoog GS, Beguin H, Batenburg-van de Vegte WH (1997) Phaeotheca triangularis, a new meristematic black yeast from a humidifier. A van Leeuwenhoek 71:289–295

    Article  Google Scholar 

  • de Hoog GS, Zalar P, van den Ende BG, Gunde-Cimerman N (2005) Relation of halotolerance to human pathogenicity in the fungal tree of life: an overview of ecology and evolution under stress. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at high salt-concentration in Archaea, Bacteria and Eukarya, vol 9. Springer, Dordrecht, The Netherlands, pp 373–395

    Google Scholar 

  • Diaz-Munos G, Montalvo-Rodriguez R (2005) Halophilic black yeast Hortaea werneckii in the Cabo Rojo solar salterns: it’s first record for this extreme environment in Puerto Rico. Caribb J Sci 41:360–365

    Google Scholar 

  • Dickson JL, Head JW, Levy JS, Marchant DR (2013) Don Juan Pond, Antarctica: near-surface CaCl2-brine feeding Earth’s most saline lake and implications for Mars. Sci Rep 3:1166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duarte AW, Dayo-Owoyemi I, Nobre FS, Pagnocca FC, Chaud LC, Pessoa A, Felipe MG, Sette LD (2013) Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles 17:1023–1035

    Article  CAS  PubMed  Google Scholar 

  • Edgcomb VP, Orsi W, Leslin C, Epstein SS, Bunge J, Jeon S, Yakimov MM, Behnke A, Stoeck T (2009) Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins. Extremophiles 13:151–167

    Article  PubMed  Google Scholar 

  • Egidi E, de Hoog GS, Isola D, Onofri S, Quaedvlieg W, de Vries M, Verkley GJM, Stielow JB, Zucconi L, Selbmann L (2014) Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies. Fungal Divers 65:127–165

    Article  Google Scholar 

  • EI-Morsy EM (2000) Fungi isolated from the endorhizosphere of halophytic plants from the Red Sea Coast of Egypt. Fungal Divers 5:43–54

    Google Scholar 

  • Evans S, Hansen RW, Schneegurt MA (2013) Isolation and characterization of halotolerant soil fungi from the Great Salt Plains of Oklahoma. Cryptogam Mycol 34:329–341

    Article  Google Scholar 

  • Filtenborg O, Frisvad JC, Samson RA (2000) Specific association of fungi to foods and influence of physical environmental factors. In: Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (eds) Introduction of food- and airborne fungi. Centraalbureau voor Schimmelcultures, Utrecht, pp 306–320

    Google Scholar 

  • Finkel OM, Burch AY, Lindow SE, Post AF, Belkin S (2011) Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl Environ Microbiol 77:7647–7655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleet GH (2011) Yeast spoilage of foods and beverages. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 53–63

    Chapter  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–331

    Article  PubMed  PubMed Central  Google Scholar 

  • Gadanho M, Sampaio JP (2005) Occurrence and diversity of yeasts in the mid-atlantic ridge hydrothermal fields near the Azores Archipelago. Microb Ecol 50:408–417

    Article  CAS  PubMed  Google Scholar 

  • Gadanho M, Almeida JM, Sampaio JP (2003) Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. A van Leeuwenhoek 84:217–227

    Article  CAS  Google Scholar 

  • Gavrieli I, Beyth M, Yechieli Y (1999) The Dead Sea – a terminal lake in the Dead Sea rift: a short overview. In: Oren A (ed) Microbiology and biogeochemistry of hypersaline environments. CRC Press, Boca Raton, FL, pp 121–127

    Google Scholar 

  • Gorjan A, Plemenitaš A (2006) Identification and characterization of ENA ATPases HwENA1 and HwENA2 from the halophilic black yeast Hortaea werneckii. FEMS Microbiol Lett 265:41–50

    Article  CAS  PubMed  Google Scholar 

  • Gostinčar C, Turk M, Trbuha T, Vaupotič T, Plemenitaš A, Gunde-Cimerman N (2008) Expression of fatty-acid-modifying enzymes in the halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress. Stud Mycol 61:51–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Gostinčar C, Turk M, Plemenitaš A, Gunde-Cimerman N (2009) The expressions of Δ9-, Δ12-desaturases and an elongase by the extremely halotolerant black yeast Hortaea werneckii are salt dependent. FEMS Yeast Res 9:247–256

    Article  PubMed  CAS  Google Scholar 

  • Gostinčar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11

    Article  PubMed  CAS  Google Scholar 

  • Gostinčar C, Grube M, Gunde-Cimerman N (2011) Evolution of fungal pathogens in domestic environments? Fungal Biol 115:1008–1018

    Article  PubMed  Google Scholar 

  • Gostinčar C, Ohm R, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15:549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goto S, Sugiyama J, Iizuka H (1969) A taxonomic study of Antarctic yeasts. Mycologia 61:748–774

    Article  CAS  PubMed  Google Scholar 

  • Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B 359:1249–1266

    Article  CAS  Google Scholar 

  • Grishkan I, Nevo E, Wasser SP (2003) Soil micromycete diversity in the hypersaline Dead Sea coastal area, Israel. Mycol Prog 2:19–28

    Article  Google Scholar 

  • Grube M, Schmid F, Berg G (2011) Black fungi and associated bacterial communities in the phyllosphere of grapevine. Fungal Biol 115:978–986

    Article  PubMed  Google Scholar 

  • Grum-Grzhimaylo AA, Georgieva ML, Bondarenko SA, Debets AJM, Bilanenko EN (2016) On the diversity of fungi from soda soils. Fungal Divers 76:27–74

    Article  Google Scholar 

  • Guiraud P, Steiman R, Seigle-Murandi F, Sage L (1995) Mycoflora of soil around the Dead Sea II – Deuteromycetes (except Aspergillus and Penicillium). Syst Appl Microbiol 18:318–322

    Article  Google Scholar 

  • Gunde-Cimerman N, Plemenitaš A (2006) Ecology and molecular adaptations of the halophilic black yeast Hortaea werneckii. Rev Environ Sci Biotechnol 5:323–331

    Article  CAS  Google Scholar 

  • Gunde-Cimerman N, Zalar P (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol Biotechnol 52:170–179

    Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns – natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    CAS  Google Scholar 

  • Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitaš A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278

    Article  Google Scholar 

  • Gunde-Cimerman N, Butinar L, Sonjak S, Turk M, Uršič V, Zalar P, Plemenitaš A (2005) Halotolerant and halophilic fungi from coastal environments in the Arctics. In: Seckbach J (ed) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya, vol 9. Springer, Netherlands, pp 397–423

    Chapter  Google Scholar 

  • Gunde-Cimerman N, Ramos J, Plemenitaš A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241

    Article  CAS  PubMed  Google Scholar 

  • Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JL, D’Auria G, de Lima AF, La Cono V, Genovese M, McKew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801–813

    Article  CAS  PubMed  Google Scholar 

  • Hardie M, Doyle R (2012) Measuring soil salinity. In: Shabala S, Cuin TA (eds) Plant salt tolerance: methods and protocols. Humana Press, Totowa, NJ, pp 415–425

    Chapter  Google Scholar 

  • Hocking AD (1993) Responses in xerophilic fungi to changes in water activity. In: Jennings DH (ed) Stress tolerance of fungi. Marcel Dekker, New York, pp 233–243

    Google Scholar 

  • Hocking AD, Pitt JI (1979) Water relations of some Penicillium species at 25 °C. Trans Br Mycol Soc 73:141–145

    Article  Google Scholar 

  • Hohmann S (2002) Osmotic stress signalling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann S (2009) Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583:4025–4029

    Article  CAS  PubMed  Google Scholar 

  • Hui FL, Ke T, Niu Q-H, Du PC (2012) Candida baotianensis sp. nov. an ascomycetous yeast species from forest soil in China. J Gen Appl Microbiol 58:59–63

    Article  CAS  PubMed  Google Scholar 

  • Hujslová M, Kubátová A, Chudíčková M, Kolařík M (2010) Diversity of fungal communities in saline and acidic soils in the Soos National Natural Reserve, Czech Republic. Mycol Prog 9:1–15

    Article  Google Scholar 

  • Iwatsu TU, Udagawa SI (1988) Hortaea werneckii isolated from sea-water. Jpn J Med Mycol 29:142–145

    Article  Google Scholar 

  • Jacobson ES, Ikeda R (2005) Effect of melanization upon porosity of the cryptococcal cell wall. Med Mycol 43:327–333

    Article  CAS  PubMed  Google Scholar 

  • Jacques N, Zenouche A, Gunde-Cimerman N, Casaregola S (2015) Increased diversity in the genus Debaryomyces from Arctic glacier samples. A van Leeuwenhoek 107:487–501

    Article  Google Scholar 

  • Jančič S, Nguyen HDT, Frisvad JC, Zalar P, Schroers H-J, Seifert KA, Gunde-Cimerman N (2015) A taxonomic revision of the Wallemia sebi species complex. PLoS One 10(5):e0125933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Javor BJ (1989) Hypersaline environments In: Schiewer U (ed) Microbiology and biogeochemistry vol 76. vol 2. Springer/Heidelberg GmbH & Co. K, Berlin, pp 287–287

    Google Scholar 

  • Kis-Papo T, Grishkan I, Oren A, Wasser P, Nevo E (2001) Spatiotemporal diversity of filamentous fungi in the hypersaline Dead Sea. Mycol Res 105:749–756

    Article  Google Scholar 

  • Klassen R, Schaffrath R, Buzzini P, Ganter PF (2017) Antagonistic interactions and killer yeasts. In: Buzzini P, Lachance MA, Yurkov AM (eds) Yeasts in natural ecosystems: ecology. Springer, Heidelberg, pp 229–275

    Google Scholar 

  • Kogej T, Ramos J, Plemenitaš A, Gunde-Cimerman N (2005) The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 71:6600–6605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogej T, Gorbushina AA, Gunde-Cimerman N (2006a) Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma. Mycol Res 110:713–724

    Article  PubMed  Google Scholar 

  • Kogej T, Gostinčar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006b) Mycosporines in extremophilic fungi – novel complementary osmolytes? Environ Chem 3:105–110

    Article  CAS  Google Scholar 

  • Kogej T, Stein M, Volkmann M, Gorbushina AA, Galinski EA, Gunde-Cimerman N (2007) Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology 153:4261–4273

    Article  CAS  PubMed  Google Scholar 

  • Kralj Kunčič M, Kogej T, Drobne D, Gunde-Cimerman N (2010) Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl Environ Microbiol 76:329–337

    Article  PubMed  CAS  Google Scholar 

  • Kriss AE, Mitskevich IN, Rozanova EP, Osnitskaya LK (1976) Microbiological investigations of Lake Vanda (Antarctica). Microbiology (Russian Academy of Sciences) 45:917–922

    Google Scholar 

  • Kritzman G (1973) Observations on the microorganisms in the Dead Sea. M.Sc. thesis, The Hebrew University of Jerusalem (in Hebrew)

    Google Scholar 

  • Kumar S, Randhawa A, Ganesan K, Singh Raghava GP, Mondal AK (2012) Draft genome sequence of salt-tolerant yeast Debaryomyces hansenii var. hansenii MTCC 234. Eukaryot Cell 11:961–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunze G, Gaillardin C, Czernicka M, Durrens P, Martin T, Böer E, Gabaldón T, Cruz JA, Talla E, Marck C, Goffeau A, Barbe V, Baret P, Baronian K, Beier S, Bleykasten C, Bode R, Casaregola S, Despons L, Fairhead C, Giersberg M, Gierski PP, Hähnel U, Hartmann A, Jankowska D, Jubin C, Jung P, Lafontaine I, Leh-Louis V, Lemaire M, Marcet-Houben M, Mascher M, Morel G, Richard GF, Riechen J, Sacerdot C, Sarkar A, Savel G, Schacherer J, Sherman DJ, Stein N, Straub ML, Thierry A, Trautwein-Schult A, Vacherie B, Westhof E, Worch S, Dujon B, Souciet JL, Wincker P, Scholz U, Neuvéglise C (2014) The complete genome of Blastobotrys (Arxula) adeninivorans LS3 – a yeast of biotechnological interest. Biotechnol Biofuels 66

    Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (eds) (2011) The yeasts: a taxonomic study, 5th edn. Amsterdam, Elsevier

    Google Scholar 

  • Lachance MA, Miranda M, Miller MW, Phaff HJ (1976) Dehiscence and active spore release in pathogenic strains of the yeast Metschnikowia bicuspidata var. australis: possible predatory implication. Can J Microbiol 22:1756–1761

    Article  CAS  PubMed  Google Scholar 

  • Lages F, Silva-Graça M, Lucas C (1999) Active glycerol uptake is a mechanism underlying halotolerance in yeasts: a study of 42 species. Microbiology 145:2577–2585

    Article  CAS  PubMed  Google Scholar 

  • Lahav R, Fareleira P, Nejidat A, Abeliovich A (2002) The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds. Microb Ecol 43:388–396

    Article  CAS  PubMed  Google Scholar 

  • Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1:756–762

    Article  CAS  PubMed  Google Scholar 

  • Larsson C, Gustafsson L (1987) Glycerol production in relation to the ATP pool and heat-production rate of the yeasts Debaryomyces hansenii and Saccharomyces cerevisiae during salt stress. Arch Microbiol 147:358–363

    Article  CAS  PubMed  Google Scholar 

  • Larsson C, Gustafsson L (1993) The role of physiological-state in osmotolerance of the salt-tolerant yeast Debaryomyces hansenii. Can J Microbiol 39:603–609

    Article  CAS  Google Scholar 

  • Larsson C, Morales C, Gustafsson L, Adler L (1990) Osmoregulation of the salt-tolerant yeast Debaryomyces hansenii grown in a chemostat at different salinities. J Bacteriol 172:1769–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62:468–473

    Article  CAS  PubMed  Google Scholar 

  • Lenassi M, Zajc J, Gostinčar C, Gorjan A, Gunde-Cimerman N, Plemenitaš A (2011) Adaptation of the glycerol-3-phosphate dehydrogenase Gpd1 to high salinities in the extremely halotolerant Hortaea werneckii and halophilic Wallemia ichthyophaga. Fungal Biol 115:959–970

    Article  CAS  PubMed  Google Scholar 

  • Lenassi M, Gostinčar C, Jackman S, Turk M, Sadowski I, Nislow C, Jones S, Birol I, Gunde Cimerman N, Plemenitaš A (2013) Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PLoS One 8(8):e71328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Chi Z, Wang X, Ma C (2007) Amylase production by the marine yeast Aureobasidium pullulans N13d. J Ocean Univ China 6:60

    Article  CAS  Google Scholar 

  • Lisichkina GA, Bab’eva IP, Sorokin DY (2003) Alkalitolerant yeasts from natural biotopes. Microbiology 72:618–620

    Article  CAS  Google Scholar 

  • Liu WC, Li CQ, Zhu P, Yang JL, Cheng KD (2010) Phylogenetic diversity of culturable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Island coastal waters of the South China Sea. Fungal Divers 42:1–15

    Article  Google Scholar 

  • Liu X-Z, Wang Q-M, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai F-Y (2015) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147

    Article  PubMed  Google Scholar 

  • Lopez-Garcia P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci U S A 100:697–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord AT, Mohandas K, Somanath S, Ambu S (2010) Multidrug resistant yeasts in synanthropic wild birds. Ann Clin Microbiol Antimicrob. doi:10.1186/1476-0711-9-11

  • Ma H, Tian C, Feng G, Yuan JF (2011) Ability of multicellular salt glands in Tamarix species to secrete Na+ and K+ selectively. Sci China Life Sci 54:282–289

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Zhang H, Du Y, Tian T, Xiang T, Liu X, Wu F, An L, Wang W, Gu J-D, Feng H (2014) The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes. Sci Rep 5:7752

    Article  CAS  Google Scholar 

  • Maciá-Vicente JG, Ferraro V, Burruano S, Lopez-Llorca LV (2012) Fungal assemblages associated with roots of halophytic and non-halophytic plant species vary differentially along a salinity gradient. Microb Ecol 64:668–679

    Article  PubMed  Google Scholar 

  • Marion GM (1997) A theoretical evaluation of mineral stability in Don Juan Pond, Wright Valley, Victoria Land. Antarct Sci 9:92–99

    Article  Google Scholar 

  • Martinelli L, Zalar P, Gunde-Cimerman N, Azua-Bustos A, Sterflinger K, Piñar G (2017) Aspergillus atacamensis and A. salisburgensis: two new halophilic species from hypersaline/arid habitats with a phialosimplex-like morphology. Extremophiles 21(4):755–773

    Article  CAS  PubMed  Google Scholar 

  • Matsubaya O, Sakai H, Torii T, Burton H, Kerry K (1979) Antarctic saline lake: stable isotopic ratios, chemical composition and evolution. Geochim Cosmochim Acta 43:7–25

    Article  CAS  Google Scholar 

  • McGenity TJ, Oren A (2012) Life in saline environments. In: Bell EM (ed) Life at extremes. Environments, organisms and strategies for survival. CABI International, Wallingford, pp 402–437

    Chapter  Google Scholar 

  • Mok WY, Castelo FP, Dasilva MSB (1981) Occurrence of Exophiala werneckii on salted fresh-water fish Osteoglossum bicirrhosum. J Food Technol 16:505–512

    Article  Google Scholar 

  • Mokhtarnejad L, Arzanlou M, Babai-Ahari A (2015) Molecular and phenotypic characterization of ascomycetous yeasts in hypersaline soils of Urmia Lake basin (NW Iran). Rostaniha 16:174–185

    Google Scholar 

  • Mokhtarnejad L, Arzanlou M, Babai-Ahari A, Di Mauro S, Onofri A, Buzzini P, Turchetti B (2016) Characterization of basidiomycetous yeasts in hypersaline soils of the Urmia Lake National Park, Iran. Extremophiles 20:915–928

    Article  CAS  PubMed  Google Scholar 

  • Molnarova J, Vadkertiova R, Stratilova E (2013) Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees. J Basic Microbiol 53

    Google Scholar 

  • Nagashima H, Nishikawa J, Matsumoto GI, Tizuka H (1990) Characterization and habitats of bacteria and yeasts isolated from Lake Vanda in Antarctica. Proc NIPR Symp Polar Biol 3:190–200

    Google Scholar 

  • Nagatsuka Y, Kawasaki H, Limtong S, Mikata K, Seki T (2002) Citeromyces siamensis sp. nov. a novel halotolerant yeast isolated in Thailand. Int J Syst 52:2315–2319

    CAS  Google Scholar 

  • Nayak S, Gonsalves V, Nazareth S (2012) Isolation and salt tolerance of halophilic fungi from mangroves and solar salterns in Goa India. Indian J Geo-Mar Sci 41:164–172

    CAS  Google Scholar 

  • Nishimura K, Miyaji M (1983) Studies on the phylogenesis of pathogenic black yeasts. Mycopathologia 81:135–144

    Article  CAS  PubMed  Google Scholar 

  • Northolt MD, Frisvad JC, Samson RA (1995) Occurrence of foodborne fungi and factors for growth. In: Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O (eds) Introduction to food borne fungi. CBS, Delft, pp 243–250

    Google Scholar 

  • Novak Babič M, Zalar P, Ženko B, Schroers H-J, Džeroski S, Gunde-Cimerman N (2015) Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washing machines. Fungal Biol 119:95–113

    Article  Google Scholar 

  • Novak Babič M, Zalar P, Ženko B, Džeroski S, Gunde-Cimerman N (2016) Yeasts and yeast-like fungi in tap water and groundwater, and their transmission to household appliances. Fungal Ecol 20:30–39

    Article  Google Scholar 

  • Okane I, Nakagiri A (2015) Assemblages of endophytic fungi on Salicornia europaea disjunctively distributed in Japan: towards clarification of the ubiquity of fungal endophytes on halophytes and their ecological roles. Curr Sci 109(1):62–71

    Google Scholar 

  • Onofri S (1999) Antarctic microfungi. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments, Cellular origin and life in extreme habitats. Kluwer Academic, Dordrecht, London, pp 323–336

    Chapter  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (2002a) Hypersaline environment and their biota. In: Oren A (ed) Halophilic microorganisms and their environments, Cellular origin, life in extreme habitats and astrobiology, vol 5. Kluwer Academic, Dordrecht/Boston/London, p 575

    Chapter  Google Scholar 

  • Oren A (2002b) Diversity of halophilic microorganisms: environments, phylogeny, physiology and applications. J Ind Microbiol Biotechnol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oren A (2009) Microbial diversity and microbial abundance in salt-saturated brines: why are the waters of hypersaline lakes red? Nat Resour Environ Issues 15:247–255

    Google Scholar 

  • Oren A (2013) Life in magnesium- and calcium-rich hypersaline environments: salt stress by chaotropic ions. In: Seckbach J, Oren A, Stan-Lotter H (eds) Polyextremophiles, vol 27. Springer Netherlands, Dordrecht, pp 215–232

    Chapter  Google Scholar 

  • Pahor M, Poberaj T (1963) Stare Piranske soline. Mladinska knjiga, Ljubljana

    Google Scholar 

  • Petrovič U, Gunde-Cimerman N, Plemenitaš A (2002) Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Mol Microbiol 45:665–672

    Article  PubMed  Google Scholar 

  • Pierce GJ (1914) The behavior of certain micro-organisms in brine: the Salton Sea. Carnegie Inst Wash Publ 193:49–69

    Google Scholar 

  • Piñar G, Dalnodar D, Voitl C, Reschreiter H, Sterflinger K (2016) Biodeterioration risk threatens the 3100 year old staircase of Hallstatt (Austria): possible involvement of halophilic microorganisms. PLoS One 11:e0148279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pires-Gonçalves RH, Sartori FG, Montanari LB, Zaia JE, Melhem MS, Mendes-Giannini MJ, Martins CH (2008) Occurrence of fungi in water used at a haemodialysis centre. Lett Appl Microbiol 46:542–547

    Article  PubMed  Google Scholar 

  • Pitt JI, Hockering AD (1997) Fungi and food spoilage, 2nd edn. Blackie Academic & Professional, London

    Book  Google Scholar 

  • Pitt JI, Hocking AD (1977) Influence of solute and hydrogen-ion concentration on water relations of some xerophilic fungi. J Gen Microbiol 101:35–40

    Article  CAS  PubMed  Google Scholar 

  • Plemenitaš A, Vaupotič T, Lenassi M, Kogej T, Gunde-Cimerman N (2008) Adaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance. Stud Mycol 61:67–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Plemenitaš A, Lenassi M, Konte T, Kejžar A, Zajc J, Gostinčar C, Gunde-Cimerman N (2014) Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective. Front Microbiol 5:199

    PubMed  PubMed Central  Google Scholar 

  • Price NPJ, Manitchotpisit P, Vermillion KE, Bowman MJ, Leathers TD (2013) Structural characterization of novel extracellular liamocins (mannitol oils) produced by Aureobasidium pullulans strain NRRL 50380. Carbohydr Res 370:24–32

    Article  CAS  PubMed  Google Scholar 

  • Prista C, Almagro A, Loureiro-Dias MC, Ramos J (1997) Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microbiol 63:4005–4009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prista C, Loureiro-Dias MC, Montiel V, García R, Ramos J (2005) Mechanisms underlying the halotolerant way of Debaryomyces hansenii. FEMS Yeast Res 5:693–701

    Article  CAS  PubMed  Google Scholar 

  • Ranta HM (1990) Effect of simulated acid rain on quantity of epiphytic microfungi on Scots pine (Pinus sylvestris L.) needles. Environ Pollut 67:349–359

    Article  CAS  PubMed  Google Scholar 

  • Ranzoni FV (1968) Fungi isolated in culture from soils of the Sonoran desert. Mycologia 60:356–371

    Article  CAS  PubMed  Google Scholar 

  • Schena L, Ippolito A, Zahavi T, Cohen L, Nigro F, Droby S (1999) Genetic diversity and biocontrol activity of Aureobasidium pullulans isolates against postharvest rots. Postharvest Biol Technol 17:189–199

    Article  CAS  Google Scholar 

  • Schneider J, Herrmann GA (1979) Saltworks – natural laboratories for microbiological and geochemical investigations during the evaporation of seawater. In: Coogan AH, Hauder L (eds), Proc Fifth Int Symp on Salt, Northern Ohio Geological Society, Cleveland, pp 371–381

    Google Scholar 

  • Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, de Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohlmeyer J, Kruys Å, Li YM, Lücking R, Lumbsch HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Rivas Plata E, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32

    Google Scholar 

  • Shin KS, Park YH, Park DJ, Kim CJ (2005) Cryptococcus taeanensis sp. nov. a new anamorphic basidiomycetous yeast isolated from a salt farm. Int J Syst Evol Microbiol 55:1365–1368

    Article  CAS  PubMed  Google Scholar 

  • Shiomi N, Yasuda T, Inoue Y, Kusumotoa N, Iwasaki S, Katsuda T, Katoh S (2004) Characteristics of neutralization of acids by newly isolated fungal cells. J Biosci Bioeng 97:54–58

    Article  CAS  PubMed  Google Scholar 

  • Siegel BZ, McMurty G, Siegel SM, Chen J, Larock P (1979) Life in the calcium chloride environment of Don Juan Pond, Antarctica. Nature 280:828–829

    Article  Google Scholar 

  • Siegel B, Siegel S, Chen J, LaRock P (1983) The algal mat of Don Juan Pond, an extraterrestrial habitat on Earth. Adv Space Res 3:39–42

    Article  CAS  PubMed  Google Scholar 

  • Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2012) Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 36:288–305

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Raghukumar C, Verma P, Shouche Y (2013) Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World J Microbiol Biotechnol 28:659–667

    Article  CAS  Google Scholar 

  • Sterflinger K, Piñar G (2013) Microbial deterioration of cultural heritage and works of art — tilting at windmills? Appl Microbiol Biotechnol 97:9637–9646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama J, Sugiyama Y, Iizuka H, Torii T (1967) Report of the Japanese summer parties in dry valleys, Victoria Land, 1963–1965. IV. Mycological studies of the Antarctic fungi. Part. 2. Mycoflora of Lake Vanda, an ice-free lake. Antarctic Rec 28:23–32

    Google Scholar 

  • Suzuki M, Prasad GS, Kurtzman CP (2011) Debaryomyces Lodder & Kreger-van Rij. In: Kurtzman CP, Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn, vol 2. Elsevier, Amsterdam, pp 361–372

    Chapter  Google Scholar 

  • Takesako K, Ikai K, Haruna F, Endo M, Shimanaka K, Sono E, Nakamura T, Kato I, Yamaguchi H (1991) Aureobasidins, new antifungal antibiotics taxonomy, fermentation, isolation, and properties. J Antibiot 44:919–924

    Article  CAS  PubMed  Google Scholar 

  • Tkavc R (2012) Microbial communities of the brine shrimp Artemia sp. and selected hypersaline microbial mats. Doctoral Dissertation, University of Ljubljana

    Google Scholar 

  • Todaro F, Berdar A, Cavaliere A, Criseo G, Pernice L (1983) Gasophthalmus in Black-Sea bream (Spondyliosoma cantharus) caused by Sarcinomyces crustaceus Lindner. Mycopathologia 81:95–97

    Article  CAS  PubMed  Google Scholar 

  • Tregoning GS, Kempher ML, Jung DO, Samarkin VA, Joye SB, Madigan MT (2015) A halophilic bacterium inhabiting the warm, CaCl2-rich brine of the perennially ice-covered Lake Vanda, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 81:1988–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trüper HG, Galinski EA (1986) Concentrated brines as habitats for microorganisms. Experientia 42:1182–1187

    Article  Google Scholar 

  • Turk M, Plemenitaš A (2002) The HOG pathway in the halophilic black yeast Hortaea werneckii: isolation of the HOG1 homolog gene and activation of HwHog1p. FEMS Microbiol Lett 216:193–199

    Article  CAS  PubMed  Google Scholar 

  • Turk M, Mejanelle L, Šentjurc M, Grimalt JO, Gunde-Cimerman N, Plemenitaš A (2004) Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8:53–61

    Article  CAS  PubMed  Google Scholar 

  • Turk M, Abramović Z, Plemenitaš A, Gunde-Cimerman N (2007) Salt stress and plasma-membrane fluidity in selected extremophilic yeasts and yeast-like fungi. FEMS Yeast Res 7:550–557

    Article  CAS  PubMed  Google Scholar 

  • van Uden N, Fell JW (1968) Marine yeasts. Adv Microbiol Sea 1:167–201

    Google Scholar 

  • Vaupotič T, Plemenitaš A (2007a) Differential gene expression and HogI interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii. BMC Genomics 8:280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaupotič T, Plemenitaš A (2007b) Differential gene expression and Hog1 interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii. BMC Genomics 8:1–34

    Article  CAS  Google Scholar 

  • Vishniac HS (2006) A multivariate analysis of soil yeasts isolated from a latitudinal gradient. Microb Ecol 52:90–10

    Article  PubMed  Google Scholar 

  • Wang QM, Groenewald M, Takashima M (2015a) Phylogeny of yeasts and related taxa within Pucciniomycotina determined from multigene sequence analyses. Stud Mycol 81:27–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang QM, Begerow D, Groenewald M (2015b) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81:54–80

    Google Scholar 

  • Wheeler KA, Hocking AD, Pitt JI (1988) Influence of temperature on the water relations of Polypaecilum pisce and Basipetospora halophila, two halophilic fungi. J Gen Microbiol 134:2255–2260

    CAS  Google Scholar 

  • Williams JP, Hallsworth JE (2009) Limits of life in hostile environments: no barriers to biosphere function? Environ Microbiol 11:3292–3308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wollenzien U, de Hoog GS, Krumbein WE, Urzí C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ 167:287–294

    Article  CAS  Google Scholar 

  • Yang XX, Wartmann T, Stoltenburg R, Kunze G (2000) Halotolerance of the yeast Arxula adeninivorans LS3. A van Leeuwenhoek 77:303–311

    Article  CAS  Google Scholar 

  • Yuan Z, Druzhinina IS, Labbé J, Redman R, Qin Y, Rodriguez R, Zhang C, Tuskan GA, Lin F (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6:32467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurkov A, Inácio J, Chernov IY, Fonseca A (2015) Yeast biogeography and the effects of species recognition approaches: the case study of widespread basidiomycetous species from birch forests in Russia. Curr Microbiol 70:587–601

    Article  CAS  PubMed  Google Scholar 

  • Zajc J, Zalar P, Plemenitaš A, Gunde-Cimerman N (2012) The mycobiota of the salterns. In: Raghukumar C (ed) Biology of marine fungi, Progress in molecular and subcellular biology, vol 53. Springer, Berlin, Heidelberg, pp 133–158

    Chapter  Google Scholar 

  • Zajc J, Liu Y, Dai W, Yang Z, Hu J, Gostinčar C, Gunde-Cimerman N (2013) Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 14:617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajc J, Dzeroski S, Kocev D, Oren A, Sonjak S, Tkavc R, Gunde-Cimerman N (2014a) Chaophilic or chaotolerant fungi: a new category of extremophiles? Front Microbiol 5:708

    Article  PubMed  PubMed Central  Google Scholar 

  • Zajc J, Kogej T, Galinski EA, Ramos J, Gunde-Cimerman N (2014b) The osmoadaptation strategy of the most halophilic fungus Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl Environ Microbiol 80:247–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999a) Trimmatostroma salinum, a new species from hypersaline water. Stud Mycol 43:57–62

    Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999b) Taxonomy of the endoconidial black yeast genera Phaeotheca and Hyphospora. Stud Mycol 43:49–56

    Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999c) Ecology of halotolerant dothideaceous black yeasts. Stud Mycol 43:38–48

    Google Scholar 

  • Zalar P, Kocuvan MA, Plemenitaš A, Gunde-Cimerman N (2005a) Halophilic black yeasts colonize wood immersed in hypersaline water. Bot Mar 48:323–326

    Article  Google Scholar 

  • Zalar P, de Hoog GS, Schroers H-J, Frank JM, Gunde-Cimerman N (2005b) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.) A van Leeuwenhoek 87:311–328

    Article  CAS  Google Scholar 

  • Zalar P, de Hoog GS, Schroers H-J, Crous PW, Groenewald JZ, Gunde-Cimerman N (2007) Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud Mycol 58:157–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalar P, Frisvad JC, Gunde-Cimerman N, Varga J, Samson RA (2008a) Four new species of Emericella from the Mediterranean region of Europe. Mycologia 100:779–795

    Article  PubMed  Google Scholar 

  • Zalar P, Gostinčar C, de Hoog GS, Uršič V, Sudhadham M, Gunde-Cimerman N (2008b) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10:658–663

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-Y, Tang G-l, Xu X-Y, Nong X-H, Qi S-H (2014) Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLoS One 9:e109118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zupančič J, Novak M, Zalar P, Gunde-Cimerman N (2016) The black yeast Exophiala dermatitidis and other selected opportunistic human fungal pathogens spread from dishwashers to kitchens. PLoS One 11:1–29

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The scientific studies integral to this report were financed partly through the ‘Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins’ (N° OP13.1.1.2.02.0005) of the European Regional Development (30%); partly by the Slovenian Ministry of Higher Education, Science and Technology (35%); and partly by the Slovenian Research Agency (35%).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Gunde-Cimerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zajc, J., Zalar, P., Gunde-Cimerman, N. (2017). Yeasts in Hypersaline Habitats. In: Buzzini, P., Lachance, MA., Yurkov, A. (eds) Yeasts in Natural Ecosystems: Diversity. Springer, Cham. https://doi.org/10.1007/978-3-319-62683-3_10

Download citation

Publish with us

Policies and ethics