Advertisement

Model Reduction for Stochastic Reaction Systems

  • Stephen Smith
  • Ramon Grima
Chapter

Abstract

It is often the case that one or more species in a system are much more abundant than the rest of the species. For such cases solving or simulating the master equation of the whole system is unnecessary since only the less abundant species will exhibit significant fluctuations number of fluctuations. Here we present a simple technique by which one can obtain, from the master equation of the full system, a reduced master equation for the less abundant species only. The method is illustrated on various examples drawn from chemistry, molecular biology and ecology.

References

  1. 1.
    N. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn. (Elsevier, Amsterdam, 2007)MATHGoogle Scholar
  2. 2.
    C. Gadgil, C. Lee, H. Othmer, A stochastic analysis of first-order reaction networks. Bull. Math. Biol. 67, 901–946 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  4. 4.
    A. Hellander, P. Lötstedt, Hybrid method for the chemical master equation. J. Comput. Phys. 227, 100–122 (2007)CrossRefMATHGoogle Scholar
  5. 5.
    S. Peleš, B. Munsky, M. Khammash, Reduction and solution of the chemical master equation using time scale separation and finite state projection. J. Chem. Phys. 125, 204104 (2006)CrossRefGoogle Scholar
  6. 6.
    P. Thomas, A.V. Straube, R. Grima, The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions. BMC Syst. Biol. 6, 39 (2012)CrossRefGoogle Scholar
  7. 7.
    T. Jahnke, On reduced models for the chemical master equation. SIAM Multiscale Model. Simul. 9, 1646–1676 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    S. Smith, C. Cianci, R. Grima, Model reduction for stochastic chemical systems with abundant species. J. Chem. Phys. 143, 214105 (2015)CrossRefGoogle Scholar
  9. 9.
    R. Grima, D. Schmidt, T. Newman, Steady-state fluctuations of a genetic feedback loop: an exact solution. J. Chem. Phys. 137, 035104 (2012)CrossRefGoogle Scholar
  10. 10.
    C. Cianci, S. Smith, R. Grima, Molecular finite-size effects in stochastic models of equilibrium chemical systems. J. Chem. Phys. 144, 084101 (2016)CrossRefGoogle Scholar
  11. 11.
    V. Shahrezaei, P.S. Swain, Analytical distributions for stochastic gene expression. Proc. Natl. Acad. Sci. 105, 17256–17261 (2008)CrossRefGoogle Scholar
  12. 12.
    S. Schnell, C. Mendoza, Closed form solution for time-dependent enzyme kinetics. J. Theor. Biol. 187, 207–212 (1997)CrossRefGoogle Scholar
  13. 13.
    R. Grima, Noise-induced breakdown of the Michaelis-Menten equation in steady-state conditions. Phys. Rev. Lett. 102, 218103 (2009)CrossRefGoogle Scholar
  14. 14.
    D. Gonze, J. Halloy, A. Goldbeter, Robustness of circadian rhythms with respect to molecular noise. Proc. Natl. Acad. Sci. 99, 673–678 (2002)CrossRefGoogle Scholar
  15. 15.
    P. Thomas, A.V. Straube, J. Timmer, C. Fleck, R. Grima, Signatures of nonlinearity in single cell noise-induced oscillations. J. Theor. Biol. 335, 222–234 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Y. Taniguchi, P. Choi, G. Li, H. Chen, M. Babu, J. Hearn, A. Emili, X.S. Xie, Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010)Google Scholar
  17. 17.
    J. Ross, I. Schreiber, V. MO, Determination of Complex Reaction Mechanisms: Analysis of Chemical, Biological, and Genetic Networks (Oxford University Press, Oxford, 2005)Google Scholar
  18. 18.
    J. Murray, Mathematical Biology I: An Introduction (Springer, New York, 2002)MATHGoogle Scholar
  19. 19.
    S. Smith, V. Shahrezaei, General transient solution of the one-step master equation in one dimension. Phys. Rev. E 91, 062119 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    C. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 1985)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of EdinburghEdinburghUK

Personalised recommendations