Advertisement

The T Cells in an Ageing Virtual Mouse

  • Mario Castro
  • Grant Lythe
  • Carmen Molina-París
Chapter

Abstract

The multiscale problem that a modeller in biology is presented with, trying to provide a systematic description of many agents, their properties, their internal dynamics and interactions, is daunting. On the other hand, biology provides a natural scale, with individual cells as agents. In agent-based computation, variables representing cell population sizes may be evaluated by counting cells of various types, but the governing dynamical rules are laid down one event at a time (J Theor Biol 231(3):357–376, 2004; CPT: Pharmacometrics Syst Pharmacol 4(11):615–629, 2015). Every cell is an individual, with its own set of attributes (state of activation, surface molecule profile, spatial location, for example). Populations of cells decrease or increase because individual cells die or divide. Here, by way of a tutorial on agent-based immune system modelling, we implement a model of the behaviour of the set of T cells in a body—numbering more than 1011 in an adult human, and more than 107 in an adult mouse (Ann Rev Immunol 28:275–294, 2010).

Notes

Acknowledgements

We are grateful for discussions with, and data provided by, Thea Hogan, Ben Seddon and Andy Yates. GDL thanks the Isaac Newton Institute programme Stochastic Dynamical Systems in Biology: Numerical Methods and Applications. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 317040 (QuanTI). This work has been partially supported by grants FIS2013-47949-C2-2-P (Spain), PIRSES-GA-2012-317893 (7th FP, EU), and BIOCAPS (FP7/REGPOT-2012- 2013.1, EC) under grant agreement no. 316265. MC thanks the Salvador de Madariaga programme through grant PRX16/00287.

References

  1. 1.
    J.L. Segovia-Juarez, S. Ganguli, D. Kirschner, Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J. Theor. Biol. 231(3), 357–376 (2004)Google Scholar
  2. 2.
    J. Cosgrove, J. Butler, K. Alden, M. Read, V. Kumar, L. Cucurull-Sanchez, J. Timmis, M Coles, Agent-based modeling in systems pharmacology. CPT: Pharmacometrics Syst. Pharmacol. 4(11), 615–629 (2015)CrossRefGoogle Scholar
  3. 3.
    M.K. Jenkins, H.H. Chu, J.B. McLachlan, J.J. Moon, On the composition of the preimmune repertoire of T cells specific for peptide-major histocompatibility complex ligands. Ann. Rev. Immunol. 28, 275–294 (2010)CrossRefGoogle Scholar
  4. 4.
    A.W. Goldrath, M.J. Bevan, Selecting and maintaining a diverse T cell repertoire. Nature 402, 255–262 (1999)CrossRefGoogle Scholar
  5. 5.
    P.D. Hodgkin, Concepts for the development of a quantitative theory of clonal selection and class regulation using lessons from the original. Immunol. Cell Biol. 86(2), 161–165 (2008)CrossRefGoogle Scholar
  6. 6.
    F.M. Burnet, A modification of Jerne’s theory of antibody production using the concept of clonal selection. CA Cancer J. Clin. 26(2), 119–121(1976)Google Scholar
  7. 7.
    E.D. Hawkins, J.F. Markham, L.P. McGuinness, P.D. Hodgkin, single-cell pedigree analysis of alternative stochastic lymphocyte fates. Proc. Natl. Acad. Sci. 106(32), 13457–13462 (2009)Google Scholar
  8. 8.
    C. Gerlach, J.C. Rohr, L. Perié, N. van Rooij, J.W.J. van Heijst, A. Velds, J. Urbanus, S.H. Naik, H. Jacobs, J.B. Beltman et al., Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340(6132), 635–639 (2013)CrossRefGoogle Scholar
  9. 9.
    A. Ahmed, D. Nandi, T cell activation and function: role of signal strength, in Mathematical Models and Immune Cell Biology, ed. by C. Molina-París, G. Lythe (Springer, London, 2011), pp. 77–100Google Scholar
  10. 10.
    F. Sallusto, D. Lenig, R. Förster, M. Lipp, A. Lanzavecchia, Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 402, 34–38 (1999)CrossRefGoogle Scholar
  11. 11.
    J.J.C. Thome, B. Grinshpun, B.V. Kumar, M. Kubota, Y. Ohmura, H. Lerner, G.D. Sempowski, Y. Shen, D.L. Farber, Long-term maintenance of human naïve t cells through in situ homeostasis in lymphoid tissue sites. Sci. Immunol. 1(6), eaah6506 (2016)Google Scholar
  12. 12.
    A.S. Perelson, D.E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 114(1), 81–125 (1993)CrossRefMATHGoogle Scholar
  13. 13.
    S.M. Ciupe, B.H. Devlin, M.L. Markert, T.B. Kepler, The dynamics of T-cell receptor repertoire diversity following thymus transplantation for digeorge anomaly. PLoS Comput. Biol. 5(6), 1–13 (2009)CrossRefGoogle Scholar
  14. 14.
    G. Lythe, R.E. Callard, R.L. Hoare, C. Molina-París, How many TCR clonotypes does a body maintain? J. Theor. Biol. 389, 214–224 (2016)CrossRefMATHGoogle Scholar
  15. 15.
    R. Varma, TCR triggering by the pMHC complex: valency, affinity, and dynamics. Sci. STKE 1(19), pe21 (2008)Google Scholar
  16. 16.
    M.S. Kuhns, M.M. Davis, TCR signaling emerges from the sum of many parts. Front. Immunol. 3, 1–13 (2012)CrossRefGoogle Scholar
  17. 17.
    J.F. Allard, O. Dushek, D. Coombs, P. Anton van der Merwe, Mechanical modulation of receptor–ligand interactions at cell–cell interfaces. Biophys. J. 102(6), 1265–1273 (2012)CrossRefGoogle Scholar
  18. 18.
    S. Tisue, U. Wilensky, Netlogo: a simple environment for modeling complexity, in International Conference on Complex Systems, Boston, MA, vol. 21 (2004), pp. 16–21Google Scholar
  19. 19.
    C. Macal, M. North, Introductory tutorial: agent-based modeling and simulation, in Proceedings of the 2014 Winter Simulation Conference (IEEE Press, New York, 2014), pp. 6–20CrossRefGoogle Scholar
  20. 20.
    D. Morley, K. Myers, The SPARK agent framework, in Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 714–721 (IEEE Computer Society, Washington, 2004)Google Scholar
  21. 21.
    G. An, Q. Mi, J. Dutta-Moscato, Y. Vodovotz, Agent-based models in translational systems biology. Wiley Interdiscip. Rev.: Syst. Biol. Med. 1(2), 159–171 (2009)Google Scholar
  22. 22.
    P. Kisielow, H. Sia Teh, H. Blüthmann, H. von Boehmer, Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335(6192), 730–733 (1988)CrossRefGoogle Scholar
  23. 23.
    S.C. Jameson, K.A. Hogquist, M.J. Bevan, Positive selection of thymocytes. Ann. Rev. Immunol. 13(1), 93–126 (1995)CrossRefGoogle Scholar
  24. 24.
    A. Singer, S. Adoro, J.-H. Park, Lineage fate and intense debate: myths, models and mechanisms of CD4-versus CD8-lineage choice. Nat. Rev. Immunol. 8(10), 788–801 (2008)CrossRefGoogle Scholar
  25. 25.
    M. Sawicka, G.L. Stritesky, J. Reynolds, N. Abourashchi, G. Lythe, C. Molina-París, K.A. Hogquist, From pre-DP, post-DP, SP4, and SP8 thymocyte cell counts to a dynamical model of cortical and medullary selection. Front. Immunol. 5, 1–14 (2014)CrossRefGoogle Scholar
  26. 26.
    T. Hogan, G. Gossel, A.J. Yates, B. Seddon, Temporal fate mapping reveals age-linked heterogeneity in naive T lymphocytes in mice. Proc. Natl. Acad. Sci. 112(50), E6917–E6926 (2015)CrossRefGoogle Scholar
  27. 27.
    T.G. Kurtz, The relationship between stochastic and deterministic models for chemical reactions. J. Chem. Phys. 57(7), 2976–2978 (1972)CrossRefGoogle Scholar
  28. 28.
    D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  29. 29.
    I. den Braber, T. Mugwagwa, N. Vrisekoop, L. Westera, R. Mögling, A. Bregje de Boer, N. Willems, E.H.R. Schrijver, G. Spierenburg, K. Gaiser, E. Mul, S.A. Otto, A.F.C. Ruiter, M.T. Ackermans, F. Miedema, J.A.M. Borghans, R.J. de Boer, K. Tesselaar, Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36(2), 288–297 (2012)CrossRefGoogle Scholar
  30. 30.
    V.V. Ganusov, R.J. De Boer, Do most lymphocytes in humans really reside in the gut? Trends Immunol. 28(12), 514–518 (2007)CrossRefGoogle Scholar
  31. 31.
    V.V. Ganusov, J.A.M. Borghans, R.J. De Boer, Explicit kinetic heterogeneity: mathematical models for interpretation of deuterium labeling of heterogeneous cell populations. PLoS Comput. Biol. 6(2), e1000666 (2010)Google Scholar
  32. 32.
    J.J.C. Thome, N. Yudanin, Y. Ohmura, M. Kubota, B. Grinshpun, T. Sathaliyawala, T. Kato, H. Lerner, Y. Shen, D.L. Farber, Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159(4), 814–828 (2014)CrossRefGoogle Scholar
  33. 33.
    G. Nigel Gilbert, Agent-Based Models (Sage, Beverley Hills, 2008)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mario Castro
    • 1
    • 2
  • Grant Lythe
    • 1
  • Carmen Molina-París
    • 1
  1. 1.Department of Applied MathematicsUniversity of LeedsLeedsUK
  2. 2.Grupo Intedisciplinar de Sistemas Complejos (GISC)Universidad Pontificia ComillasMadridSpain

Personalised recommendations