Advertisement

A Phenomenological Spatial Model for Macro-Ecological Patterns in Species-Rich Ecosystems

  • Fabio Peruzzo
  • Sandro Azaele
Chapter

Abstract

Over the last few decades, ecologists have come to appreciate that key ecological patterns, which describe ecological communities at relatively large spatial scales, are not only scale dependent, but also intimately intertwined. The relative abundance of species—which informs us about the commonness and rarity of species—changes its shape from small to large spatial scales. The average number of species as a function of area has a steep initial increase, followed by decreasing slopes at large scales. Finally, if we find a species in a given location, it is more likely we find an individual of the same species close-by, rather than farther apart. Such spatial turnover depends on the geographical distribution of species, which often are spatially aggregated. This reverberates on the abundances as well as the richness of species within a region, but so far it has been difficult to quantify such relationships.

Within a neutral framework—which considers all individuals competitively equivalent—we introduce a spatial stochastic model, which phenomenologically accounts for birth, death, immigration and local dispersal of individuals. We calculate the pair correlation function—which encapsulates spatial turnover—and the conditional probability to find a species with a certain population within a given circular area. Also, we calculate the macro-ecological patterns, which we have referred to above, and compare the analytical formulæ with the numerical integration of the model. Finally, we contrast the model predictions with the empirical data for two lowland tropical forest inventories, showing always a good agreement.

Notes

Acknowledgements

The authors would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme ‘Stochastic Dynamical Systems in Biology: Numerical Methods and Applications’ where work on this paper was undertaken. This work was supported by EPSRC grant no EP/K032208/1. We are also grateful to the FRIM Pasoh Research Committee (M.N.M. Yusoff, R. Kassim) and the Center for Tropical Research Science (R. Condit, S. Hubbell, R. Foster) for providing the empirical data of the Pasoh and BCI forests, respectively. SA is in debt with Prof. A. Maritan for insightful discussions.

References

  1. 1.
    D. Alonso, A.J. McKane, Sampling Hubbell’s neutral theory of biodiversity. Ecol. Lett. 7(10), 901–910 (2004)CrossRefGoogle Scholar
  2. 2.
    O. Arrhenius, Species and area. J. Ecol. 9(1), 95–99 (1921)CrossRefGoogle Scholar
  3. 3.
    S. Azaele, S. Pigolotti, J.R. Banavar, A. Maritan, Dynamical evolution of ecosystems. Nature 444(7121), 926–928 (2006)CrossRefGoogle Scholar
  4. 4.
    S. Azaele, R. Muneepeerakul, A. Maritan, A. Rinaldo, I. Rodriguez-Iturbe, Predicting spatial similarity of freshwater fish biodiversity. Proc. Natl. Acad. Sci. 106(17), 7058–7062 (2009)CrossRefGoogle Scholar
  5. 5.
    S. Azaele, A. Maritan, S.J. Cornell, S. Suweis, J.R. Banavar, D. Gabriel, W.E. Kunin, Towards a unified descriptive theory for spatial ecology: predicting biodiversity patterns across spatial scales. Methods Ecol. Evol. 6, 324–332 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Azaele, S. Suweis, J. Grilli, I. Volkov, J.R. Banavar, A. Maritan, Statistical mechanics of ecological systems: neutral theory and beyond. Rev. Mod. Phys. 88(3), 035003 (2016)Google Scholar
  7. 7.
    A.J. Black, A.J. McKane, Stochastic formulation of ecological models and their applications. Trends Ecol. Evol. 27(6), 337–345 (2012)CrossRefGoogle Scholar
  8. 8.
    J.H. Brown, Macroecology (The University of Chicago Press, Chicago, 1995)Google Scholar
  9. 9.
    D.S. Dean, Langevin equation for the density of a system of interacting Langevin processes. J. Phys. A: Math. Gen. 29(24), L613 (1996)Google Scholar
  10. 10.
    I. Dornic, H. Chaté, M.A. Munoz, Integration of Langevin equations with multiplicative noise and the viability of field theories for absorbing phase transitions. Phys. Rev. Lett. 94(10), 100601 (2005)Google Scholar
  11. 11.
    S. Drakare, J.J. Lennon, H. Hillebrand, The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9(2), 215–227 (2006)CrossRefGoogle Scholar
  12. 12.
    A. Etheridge, An Introduction to Superprocesses (American Mathematical Society, Providence, 2000)CrossRefMATHGoogle Scholar
  13. 13.
    R.S. Etienne, D. Alonso, A.J. McKane, The zero-sum assumption in neutral biodiversity theory. J. Theor. Biol. 248(3), 522–536 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A.S. Fisher, R.A. Corbet, C.B. Williams, The relation between the number of species of individuals in a random sample of an animal population. J. Anim. Ecol. 12(12), 42–58 (1943)CrossRefGoogle Scholar
  15. 15.
    C.W. Gardiner, M.L. Steyn-Ross, Adiabatic elimination in stochastic systems. II. Application to reaction diffusion and hydrodynamic-like systems. Phys. Rev. A 29(5), 2823 (1984)Google Scholar
  16. 16.
    J. Grilli, S. Azaele, J.R. Banavar, A. Maritan, Spatial aggregation and the species–area relationship across scales. J. Theor. Biol. 313, 87–97 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    J. Harte, Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics (Oxford University Press, Oxford, 2011)CrossRefMATHGoogle Scholar
  18. 18.
    J. Harte, S. McCarthy, K. Taylor, A. Kinzig, M.L. Fischer, Estimating species-area relationships from plot to landscape scale using species spatial-turnover data. Oikos 86, 45–54 (1999)CrossRefGoogle Scholar
  19. 19.
    S. Hubbell, The Unified Theory of Biodiversity and Biogeography (Princeton University Press, Princeton, 2001)Google Scholar
  20. 20.
    N.N. Lebedev, Special Functions and Their Applications (Courier Dover Publications, New York, 1972)MATHGoogle Scholar
  21. 21.
    F. May, T. Wiegand, S. Lehmann, A. Huth, Do abundance distributions and species aggregation correctly predict macroecological biodiversity patterns in tropical forests? Glob. Ecol. Biogeogr. 25, 575–585 (2016)CrossRefGoogle Scholar
  22. 22.
    B.J. McGill, R.S. Etienne, J.S. Gray, D. Alonso, M.J. Anderson, H.K. Benecha, M. Dornelas, B.J. Enquist, J.L. Green, F. He, Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10(10), 995–1015 (2007)CrossRefGoogle Scholar
  23. 23.
    H. Morlon, G. Chuyong, R. Condit, S. Hubbell, D. Kenfack, D. Thomas, R. Valencia, J.L. Green, A general framework for the distance–decay of similarity in ecological communities. Ecol. Lett. 11(9), 904–917 (2008)CrossRefGoogle Scholar
  24. 24.
    R. Muneepeerakul, S. Azaele, S.A. Levin, A. Rinaldo, I. Rodriguez-Iturbe, Evolution of dispersal in explicitly spatial metacommunities. J. Theor. Biol. 269(1), 256–265 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    L. Pechenik, H. Levine, Interfacial velocity corrections due to multiplicative noise. Phys. Rev. E 59(4), 3893 (1999)Google Scholar
  26. 26.
    M. Plischke, B. Bergersen, Equilibrium Statistical Physics (World Scientific, Singapore, 2006)CrossRefMATHGoogle Scholar
  27. 27.
    J.B. Plotkin, M.D. Potts, N. Leslie, N. Manokaran, J. LaFrankie, P.S. Ashton, Species-area curves, spatial aggregation, and habitat specialization in tropical forests. J. Theor. Biol. 207(1), 81–99 (2000)CrossRefGoogle Scholar
  28. 28.
    J. Rosindell, S.J. Cornell, Species–area relationships from a spatially explicit neutral model in an infinite landscape. Ecol. Lett. 10(7), 586–595 (2007)CrossRefGoogle Scholar
  29. 29.
    J. Rosindell, S.J. Cornell, S.P. Hubbell, R.S. Etienne, Protracted speciation revitalizes the neutral theory of biodiversity. Ecol. Lett. 13(6), 716–727 (2010)CrossRefGoogle Scholar
  30. 30.
    J. Rosindell, S.P. Hubbell, R.S. Etienne, The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26(7), 340–348 (2011)CrossRefGoogle Scholar
  31. 31.
    A.L. Šizling, D. Storch, Power-law species–area relationships and self-similar species distributions within finite areas. Ecol. Lett. 7(1), 60–68 (2004)CrossRefGoogle Scholar
  32. 32.
    D. Storch, P. Keil, W. Jetz, Universal species-area and endemics-area relationships at continental scales. Nature 488(7409), 78–81 (2012)CrossRefGoogle Scholar
  33. 33.
    N.G. Van Kampen, Stochastic Processes in Physics and Chemistry. North-Holland Personal Library, 3rd edn. (North Holland, Amsterdam, 2007)Google Scholar
  34. 34.
    I. Volkov, J.R. Banavar, S.P. Hubbell, A. Maritan, Neutral theory and relative species abundance in ecology. Nature 424(6952), 1035–1037 (2003)CrossRefGoogle Scholar
  35. 35.
    I. Volkov, J.R. Banavar, F. He, S. Hubbell, A. Maritan, Density dependence explains tree species abundance and diversity in tropical forests. Nature 438(7068), 658–661 (2005)CrossRefGoogle Scholar
  36. 36.
    I. Volkov, J.R. Banavar, S.P. Hubbell, A. Maritan, Patterns of relative species abundance in rainforests and coral reefs. Nature 450(7166), 45–49 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fabio Peruzzo
    • 1
  • Sandro Azaele
    • 1
  1. 1.Department of Applied MathematicsSchool of Mathematics, University of LeedsLeedsUK

Personalised recommendations